Copied to
clipboard

G = D152C8order 240 = 24·3·5

The semidirect product of D15 and C8 acting via C8/C4=C2

metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D152C8, D30.4C4, C20.31D6, C12.31D10, C60.31C22, Dic15.4C4, C53(S3×C8), C3⋊C86D5, C31(C8×D5), C157(C2×C8), C52C86S3, C6.1(C4×D5), C10.8(C4×S3), C4.24(S3×D5), C30.24(C2×C4), (C4×D15).4C2, C2.1(D30.C2), (C5×C3⋊C8)⋊5C2, (C3×C52C8)⋊5C2, SmallGroup(240,9)

Series: Derived Chief Lower central Upper central

C1C15 — D152C8
C1C5C15C30C60C3×C52C8 — D152C8
C15 — D152C8
C1C4

Generators and relations for D152C8
 G = < a,b,c | a15=b2=c8=1, bab=a-1, cac-1=a11, cbc-1=a10b >

15C2
15C2
15C4
15C22
5S3
5S3
3D5
3D5
3C8
5C8
15C2×C4
5Dic3
5D6
3Dic5
3D10
15C2×C8
5C24
5C4×S3
3C40
3C4×D5
5S3×C8
3C8×D5

Smallest permutation representation of D152C8
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 49)(32 48)(33 47)(34 46)(35 60)(36 59)(37 58)(38 57)(39 56)(40 55)(41 54)(42 53)(43 52)(44 51)(45 50)(61 81)(62 80)(63 79)(64 78)(65 77)(66 76)(67 90)(68 89)(69 88)(70 87)(71 86)(72 85)(73 84)(74 83)(75 82)(91 109)(92 108)(93 107)(94 106)(95 120)(96 119)(97 118)(98 117)(99 116)(100 115)(101 114)(102 113)(103 112)(104 111)(105 110)
(1 118 50 83 16 98 31 75)(2 114 51 79 17 94 32 71)(3 110 52 90 18 105 33 67)(4 106 53 86 19 101 34 63)(5 117 54 82 20 97 35 74)(6 113 55 78 21 93 36 70)(7 109 56 89 22 104 37 66)(8 120 57 85 23 100 38 62)(9 116 58 81 24 96 39 73)(10 112 59 77 25 92 40 69)(11 108 60 88 26 103 41 65)(12 119 46 84 27 99 42 61)(13 115 47 80 28 95 43 72)(14 111 48 76 29 91 44 68)(15 107 49 87 30 102 45 64)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,49)(32,48)(33,47)(34,46)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,54)(42,53)(43,52)(44,51)(45,50)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(91,109)(92,108)(93,107)(94,106)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110), (1,118,50,83,16,98,31,75)(2,114,51,79,17,94,32,71)(3,110,52,90,18,105,33,67)(4,106,53,86,19,101,34,63)(5,117,54,82,20,97,35,74)(6,113,55,78,21,93,36,70)(7,109,56,89,22,104,37,66)(8,120,57,85,23,100,38,62)(9,116,58,81,24,96,39,73)(10,112,59,77,25,92,40,69)(11,108,60,88,26,103,41,65)(12,119,46,84,27,99,42,61)(13,115,47,80,28,95,43,72)(14,111,48,76,29,91,44,68)(15,107,49,87,30,102,45,64)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,49)(32,48)(33,47)(34,46)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,54)(42,53)(43,52)(44,51)(45,50)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(91,109)(92,108)(93,107)(94,106)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110), (1,118,50,83,16,98,31,75)(2,114,51,79,17,94,32,71)(3,110,52,90,18,105,33,67)(4,106,53,86,19,101,34,63)(5,117,54,82,20,97,35,74)(6,113,55,78,21,93,36,70)(7,109,56,89,22,104,37,66)(8,120,57,85,23,100,38,62)(9,116,58,81,24,96,39,73)(10,112,59,77,25,92,40,69)(11,108,60,88,26,103,41,65)(12,119,46,84,27,99,42,61)(13,115,47,80,28,95,43,72)(14,111,48,76,29,91,44,68)(15,107,49,87,30,102,45,64) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,49),(32,48),(33,47),(34,46),(35,60),(36,59),(37,58),(38,57),(39,56),(40,55),(41,54),(42,53),(43,52),(44,51),(45,50),(61,81),(62,80),(63,79),(64,78),(65,77),(66,76),(67,90),(68,89),(69,88),(70,87),(71,86),(72,85),(73,84),(74,83),(75,82),(91,109),(92,108),(93,107),(94,106),(95,120),(96,119),(97,118),(98,117),(99,116),(100,115),(101,114),(102,113),(103,112),(104,111),(105,110)], [(1,118,50,83,16,98,31,75),(2,114,51,79,17,94,32,71),(3,110,52,90,18,105,33,67),(4,106,53,86,19,101,34,63),(5,117,54,82,20,97,35,74),(6,113,55,78,21,93,36,70),(7,109,56,89,22,104,37,66),(8,120,57,85,23,100,38,62),(9,116,58,81,24,96,39,73),(10,112,59,77,25,92,40,69),(11,108,60,88,26,103,41,65),(12,119,46,84,27,99,42,61),(13,115,47,80,28,95,43,72),(14,111,48,76,29,91,44,68),(15,107,49,87,30,102,45,64)]])

D152C8 is a maximal subgroup of
D15⋊C16  D30.C8  S3×C8×D5  C40⋊D6  C40.34D6  C40.55D6  D60.5C4  D60.4C4  D154M4(2)  D15⋊D8  Dic10⋊D6  D20.10D6  D30.11D4  D15⋊SD16  D15⋊Q16  D20.16D6  D12.D10
D152C8 is a maximal quotient of
D152C16  D30.5C8  Dic154C8  D304C8  C60.14Q8

48 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D5A5B 6 8A8B8C8D8E8F8G8H10A10B12A12B15A15B20A20B20C20D24A24B24C24D30A30B40A···40H60A60B60C60D
order122234444556888888881010121215152020202024242424303040···4060606060
size111515211151522233335555222244222210101010446···64444

48 irreducible representations

dim111111122222222444
type++++++++++
imageC1C2C2C2C4C4C8S3D5D6D10C4×S3C4×D5S3×C8C8×D5S3×D5D30.C2D152C8
kernelD152C8C5×C3⋊C8C3×C52C8C4×D15Dic15D30D15C52C8C3⋊C8C20C12C10C6C5C3C4C2C1
# reps111122812122448224

Matrix representation of D152C8 in GL4(𝔽241) generated by

1905100
19024000
0023949
001771
,
0100
1000
002192
0064239
,
1000
0100
00300
00233211
G:=sub<GL(4,GF(241))| [190,190,0,0,51,240,0,0,0,0,239,177,0,0,49,1],[0,1,0,0,1,0,0,0,0,0,2,64,0,0,192,239],[1,0,0,0,0,1,0,0,0,0,30,233,0,0,0,211] >;

D152C8 in GAP, Magma, Sage, TeX

D_{15}\rtimes_2C_8
% in TeX

G:=Group("D15:2C8");
// GroupNames label

G:=SmallGroup(240,9);
// by ID

G=gap.SmallGroup(240,9);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,31,50,490,6917]);
// Polycyclic

G:=Group<a,b,c|a^15=b^2=c^8=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^10*b>;
// generators/relations

Export

Subgroup lattice of D152C8 in TeX

׿
×
𝔽