Extensions 1→N→G→Q→1 with N=Dic7 and Q=C2xC4

Direct product G=NxQ with N=Dic7 and Q=C2xC4
dρLabelID
C2xC4xDic7224C2xC4xDic7224,117

Semidirect products G=N:Q with N=Dic7 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
Dic7:1(C2xC4) = Dic7:4D4φ: C2xC4/C4C2 ⊆ Out Dic7112Dic7:1(C2xC4)224,76
Dic7:2(C2xC4) = C4xC7:D4φ: C2xC4/C4C2 ⊆ Out Dic7112Dic7:2(C2xC4)224,123
Dic7:3(C2xC4) = D7xC4:C4φ: C2xC4/C22C2 ⊆ Out Dic7112Dic7:3(C2xC4)224,86
Dic7:4(C2xC4) = C2xDic7:C4φ: C2xC4/C22C2 ⊆ Out Dic7224Dic7:4(C2xC4)224,118
Dic7:5(C2xC4) = D7xC42φ: trivial image112Dic7:5(C2xC4)224,66

Non-split extensions G=N.Q with N=Dic7 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
Dic7.1(C2xC4) = C4xDic14φ: C2xC4/C4C2 ⊆ Out Dic7224Dic7.1(C2xC4)224,63
Dic7.2(C2xC4) = Dic7:3Q8φ: C2xC4/C4C2 ⊆ Out Dic7224Dic7.2(C2xC4)224,82
Dic7.3(C2xC4) = D28.2C4φ: C2xC4/C4C2 ⊆ Out Dic71122Dic7.3(C2xC4)224,96
Dic7.4(C2xC4) = D28.C4φ: C2xC4/C4C2 ⊆ Out Dic71124Dic7.4(C2xC4)224,102
Dic7.5(C2xC4) = C42:D7φ: C2xC4/C22C2 ⊆ Out Dic7112Dic7.5(C2xC4)224,67
Dic7.6(C2xC4) = C2xC8:D7φ: C2xC4/C22C2 ⊆ Out Dic7112Dic7.6(C2xC4)224,95
Dic7.7(C2xC4) = D7xM4(2)φ: C2xC4/C22C2 ⊆ Out Dic7564Dic7.7(C2xC4)224,101
Dic7.8(C2xC4) = C23.11D14φ: trivial image112Dic7.8(C2xC4)224,72
Dic7.9(C2xC4) = C4:C4:7D7φ: trivial image112Dic7.9(C2xC4)224,87
Dic7.10(C2xC4) = D7xC2xC8φ: trivial image112Dic7.10(C2xC4)224,94

׿
x
:
Z
F
o
wr
Q
<