Copied to
clipboard

G = D7xC2xC8order 224 = 25·7

Direct product of C2xC8 and D7

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D7xC2xC8, C56:10C22, C28.35C23, C14:1(C2xC8), (C2xC56):8C2, C7:1(C22xC8), C7:C8:13C22, (C4xD7).5C4, C4.23(C4xD7), C28.26(C2xC4), D14.9(C2xC4), (C2xC4).97D14, (C2xDic7).8C4, (C22xD7).5C4, C4.35(C22xD7), C22.13(C4xD7), C14.12(C22xC4), Dic7.10(C2xC4), (C4xD7).17C22, (C2xC28).110C22, (C2xC7:C8):13C2, C2.2(C2xC4xD7), (C2xC4xD7).12C2, (C2xC14).14(C2xC4), SmallGroup(224,94)

Series: Derived Chief Lower central Upper central

C1C7 — D7xC2xC8
C1C7C14C28C4xD7C2xC4xD7 — D7xC2xC8
C7 — D7xC2xC8
C1C2xC8

Generators and relations for D7xC2xC8
 G = < a,b,c,d | a2=b8=c7=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 238 in 76 conjugacy classes, 49 normal (19 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2xC4, C2xC4, C23, D7, C14, C14, C2xC8, C2xC8, C22xC4, Dic7, C28, D14, C2xC14, C22xC8, C7:C8, C56, C4xD7, C2xDic7, C2xC28, C22xD7, C8xD7, C2xC7:C8, C2xC56, C2xC4xD7, D7xC2xC8
Quotients: C1, C2, C4, C22, C8, C2xC4, C23, D7, C2xC8, C22xC4, D14, C22xC8, C4xD7, C22xD7, C8xD7, C2xC4xD7, D7xC2xC8

Smallest permutation representation of D7xC2xC8
On 112 points
Generators in S112
(1 108)(2 109)(3 110)(4 111)(5 112)(6 105)(7 106)(8 107)(9 93)(10 94)(11 95)(12 96)(13 89)(14 90)(15 91)(16 92)(17 101)(18 102)(19 103)(20 104)(21 97)(22 98)(23 99)(24 100)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 57)(32 58)(33 67)(34 68)(35 69)(36 70)(37 71)(38 72)(39 65)(40 66)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 73)(48 74)(49 83)(50 84)(51 85)(52 86)(53 87)(54 88)(55 81)(56 82)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 83 94 103 64 68 79)(2 84 95 104 57 69 80)(3 85 96 97 58 70 73)(4 86 89 98 59 71 74)(5 87 90 99 60 72 75)(6 88 91 100 61 65 76)(7 81 92 101 62 66 77)(8 82 93 102 63 67 78)(9 18 29 33 44 107 56)(10 19 30 34 45 108 49)(11 20 31 35 46 109 50)(12 21 32 36 47 110 51)(13 22 25 37 48 111 52)(14 23 26 38 41 112 53)(15 24 27 39 42 105 54)(16 17 28 40 43 106 55)
(1 75)(2 76)(3 77)(4 78)(5 79)(6 80)(7 73)(8 74)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 21)(18 22)(19 23)(20 24)(33 52)(34 53)(35 54)(36 55)(37 56)(38 49)(39 50)(40 51)(41 108)(42 109)(43 110)(44 111)(45 112)(46 105)(47 106)(48 107)(57 91)(58 92)(59 93)(60 94)(61 95)(62 96)(63 89)(64 90)(65 84)(66 85)(67 86)(68 87)(69 88)(70 81)(71 82)(72 83)(97 101)(98 102)(99 103)(100 104)

G:=sub<Sym(112)| (1,108)(2,109)(3,110)(4,111)(5,112)(6,105)(7,106)(8,107)(9,93)(10,94)(11,95)(12,96)(13,89)(14,90)(15,91)(16,92)(17,101)(18,102)(19,103)(20,104)(21,97)(22,98)(23,99)(24,100)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,65)(40,66)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,73)(48,74)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,81)(56,82), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,83,94,103,64,68,79)(2,84,95,104,57,69,80)(3,85,96,97,58,70,73)(4,86,89,98,59,71,74)(5,87,90,99,60,72,75)(6,88,91,100,61,65,76)(7,81,92,101,62,66,77)(8,82,93,102,63,67,78)(9,18,29,33,44,107,56)(10,19,30,34,45,108,49)(11,20,31,35,46,109,50)(12,21,32,36,47,110,51)(13,22,25,37,48,111,52)(14,23,26,38,41,112,53)(15,24,27,39,42,105,54)(16,17,28,40,43,106,55), (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,73)(8,74)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,21)(18,22)(19,23)(20,24)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51)(41,108)(42,109)(43,110)(44,111)(45,112)(46,105)(47,106)(48,107)(57,91)(58,92)(59,93)(60,94)(61,95)(62,96)(63,89)(64,90)(65,84)(66,85)(67,86)(68,87)(69,88)(70,81)(71,82)(72,83)(97,101)(98,102)(99,103)(100,104)>;

G:=Group( (1,108)(2,109)(3,110)(4,111)(5,112)(6,105)(7,106)(8,107)(9,93)(10,94)(11,95)(12,96)(13,89)(14,90)(15,91)(16,92)(17,101)(18,102)(19,103)(20,104)(21,97)(22,98)(23,99)(24,100)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,65)(40,66)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,73)(48,74)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,81)(56,82), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,83,94,103,64,68,79)(2,84,95,104,57,69,80)(3,85,96,97,58,70,73)(4,86,89,98,59,71,74)(5,87,90,99,60,72,75)(6,88,91,100,61,65,76)(7,81,92,101,62,66,77)(8,82,93,102,63,67,78)(9,18,29,33,44,107,56)(10,19,30,34,45,108,49)(11,20,31,35,46,109,50)(12,21,32,36,47,110,51)(13,22,25,37,48,111,52)(14,23,26,38,41,112,53)(15,24,27,39,42,105,54)(16,17,28,40,43,106,55), (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,73)(8,74)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,21)(18,22)(19,23)(20,24)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51)(41,108)(42,109)(43,110)(44,111)(45,112)(46,105)(47,106)(48,107)(57,91)(58,92)(59,93)(60,94)(61,95)(62,96)(63,89)(64,90)(65,84)(66,85)(67,86)(68,87)(69,88)(70,81)(71,82)(72,83)(97,101)(98,102)(99,103)(100,104) );

G=PermutationGroup([[(1,108),(2,109),(3,110),(4,111),(5,112),(6,105),(7,106),(8,107),(9,93),(10,94),(11,95),(12,96),(13,89),(14,90),(15,91),(16,92),(17,101),(18,102),(19,103),(20,104),(21,97),(22,98),(23,99),(24,100),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,57),(32,58),(33,67),(34,68),(35,69),(36,70),(37,71),(38,72),(39,65),(40,66),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,73),(48,74),(49,83),(50,84),(51,85),(52,86),(53,87),(54,88),(55,81),(56,82)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,83,94,103,64,68,79),(2,84,95,104,57,69,80),(3,85,96,97,58,70,73),(4,86,89,98,59,71,74),(5,87,90,99,60,72,75),(6,88,91,100,61,65,76),(7,81,92,101,62,66,77),(8,82,93,102,63,67,78),(9,18,29,33,44,107,56),(10,19,30,34,45,108,49),(11,20,31,35,46,109,50),(12,21,32,36,47,110,51),(13,22,25,37,48,111,52),(14,23,26,38,41,112,53),(15,24,27,39,42,105,54),(16,17,28,40,43,106,55)], [(1,75),(2,76),(3,77),(4,78),(5,79),(6,80),(7,73),(8,74),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,21),(18,22),(19,23),(20,24),(33,52),(34,53),(35,54),(36,55),(37,56),(38,49),(39,50),(40,51),(41,108),(42,109),(43,110),(44,111),(45,112),(46,105),(47,106),(48,107),(57,91),(58,92),(59,93),(60,94),(61,95),(62,96),(63,89),(64,90),(65,84),(66,85),(67,86),(68,87),(69,88),(70,81),(71,82),(72,83),(97,101),(98,102),(99,103),(100,104)]])

D7xC2xC8 is a maximal subgroup of
D14:C16  D14.C42  C8:9D28  D14.4C42  C7:D4:C8  D14:C8:C2  D14:2M4(2)  D4:2D7:C4  D14:D8  D14:SD16  Q8:2D7:C4  D14:2SD16  D14:Q16  D28:C8  D14:3M4(2)  C42.30D14  (C8xD7):C4  C8:8D28  C8.27(C4xD7)  C8:7D28  D14:2Q16  C56:D4  C56:6D4  C56:14D4  D14:3Q16
D7xC2xC8 is a maximal quotient of
C42.282D14  Dic7.5M4(2)  C7:D4:C8  Dic14:C8  C42.200D14  D28:C8  D28.4C8  C16.12D14

80 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H7A7B7C8A···8H8I···8P14A···14I28A···28L56A···56X
order12222222444444447778···88···814···1428···2856···56
size11117777111177772221···17···72···22···22···2

80 irreducible representations

dim111111111222222
type++++++++
imageC1C2C2C2C2C4C4C4C8D7D14D14C4xD7C4xD7C8xD7
kernelD7xC2xC8C8xD7C2xC7:C8C2xC56C2xC4xD7C4xD7C2xDic7C22xD7D14C2xC8C8C2xC4C4C22C2
# reps14111422163636624

Matrix representation of D7xC2xC8 in GL3(F113) generated by

11200
010
001
,
11200
0690
0069
,
100
01121
03280
,
11200
010
081112
G:=sub<GL(3,GF(113))| [112,0,0,0,1,0,0,0,1],[112,0,0,0,69,0,0,0,69],[1,0,0,0,112,32,0,1,80],[112,0,0,0,1,81,0,0,112] >;

D7xC2xC8 in GAP, Magma, Sage, TeX

D_7\times C_2\times C_8
% in TeX

G:=Group("D7xC2xC8");
// GroupNames label

G:=SmallGroup(224,94);
// by ID

G=gap.SmallGroup(224,94);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,50,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^7=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<