Extensions 1→N→G→Q→1 with N=C40 and Q=S3

Direct product G=N×Q with N=C40 and Q=S3
dρLabelID
S3×C401202S3xC40240,49

Semidirect products G=N:Q with N=C40 and Q=S3
extensionφ:Q→Aut NdρLabelID
C401S3 = D120φ: S3/C3C2 ⊆ Aut C401202+C40:1S3240,68
C402S3 = C24⋊D5φ: S3/C3C2 ⊆ Aut C401202C40:2S3240,67
C403S3 = C8×D15φ: S3/C3C2 ⊆ Aut C401202C40:3S3240,65
C404S3 = C40⋊S3φ: S3/C3C2 ⊆ Aut C401202C40:4S3240,66
C405S3 = C5×D24φ: S3/C3C2 ⊆ Aut C401202C40:5S3240,52
C406S3 = C5×C24⋊C2φ: S3/C3C2 ⊆ Aut C401202C40:6S3240,51
C407S3 = C5×C8⋊S3φ: S3/C3C2 ⊆ Aut C401202C40:7S3240,50

Non-split extensions G=N.Q with N=C40 and Q=S3
extensionφ:Q→Aut NdρLabelID
C40.1S3 = Dic60φ: S3/C3C2 ⊆ Aut C402402-C40.1S3240,69
C40.2S3 = C153C16φ: S3/C3C2 ⊆ Aut C402402C40.2S3240,3
C40.3S3 = C5×Dic12φ: S3/C3C2 ⊆ Aut C402402C40.3S3240,53
C40.4S3 = C5×C3⋊C16central extension (φ=1)2402C40.4S3240,1

׿
×
𝔽