Copied to
clipboard

G = C24⋊D5order 240 = 24·3·5

2nd semidirect product of C24 and D5 acting via D5/C5=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C402S3, C242D5, C82D15, C1202C2, C2.3D60, C4.8D30, C6.1D20, C157SD16, D60.1C2, C20.43D6, C30.19D4, C10.1D12, Dic301C2, C12.43D10, C60.50C22, C51(C24⋊C2), C31(C40⋊C2), SmallGroup(240,67)

Series: Derived Chief Lower central Upper central

C1C60 — C24⋊D5
C1C5C15C30C60D60 — C24⋊D5
C15C30C60 — C24⋊D5
C1C2C4C8

Generators and relations for C24⋊D5
 G = < a,b,c | a8=b15=c2=1, ab=ba, cac=a3, cbc=b-1 >

60C2
30C22
30C4
20S3
12D5
15Q8
15D4
10Dic3
10D6
6D10
6Dic5
4D15
15SD16
5Dic6
5D12
3D20
3Dic10
2D30
2Dic15
5C24⋊C2
3C40⋊C2

Smallest permutation representation of C24⋊D5
On 120 points
Generators in S120
(1 110 47 84 17 92 39 61)(2 111 48 85 18 93 40 62)(3 112 49 86 19 94 41 63)(4 113 50 87 20 95 42 64)(5 114 51 88 21 96 43 65)(6 115 52 89 22 97 44 66)(7 116 53 90 23 98 45 67)(8 117 54 76 24 99 31 68)(9 118 55 77 25 100 32 69)(10 119 56 78 26 101 33 70)(11 120 57 79 27 102 34 71)(12 106 58 80 28 103 35 72)(13 107 59 81 29 104 36 73)(14 108 60 82 30 105 37 74)(15 109 46 83 16 91 38 75)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 17)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 60)(41 59)(42 58)(43 57)(44 56)(45 55)(61 91)(62 105)(63 104)(64 103)(65 102)(66 101)(67 100)(68 99)(69 98)(70 97)(71 96)(72 95)(73 94)(74 93)(75 92)(76 117)(77 116)(78 115)(79 114)(80 113)(81 112)(82 111)(83 110)(84 109)(85 108)(86 107)(87 106)(88 120)(89 119)(90 118)

G:=sub<Sym(120)| (1,110,47,84,17,92,39,61)(2,111,48,85,18,93,40,62)(3,112,49,86,19,94,41,63)(4,113,50,87,20,95,42,64)(5,114,51,88,21,96,43,65)(6,115,52,89,22,97,44,66)(7,116,53,90,23,98,45,67)(8,117,54,76,24,99,31,68)(9,118,55,77,25,100,32,69)(10,119,56,78,26,101,33,70)(11,120,57,79,27,102,34,71)(12,106,58,80,28,103,35,72)(13,107,59,81,29,104,36,73)(14,108,60,82,30,105,37,74)(15,109,46,83,16,91,38,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,17)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,60)(41,59)(42,58)(43,57)(44,56)(45,55)(61,91)(62,105)(63,104)(64,103)(65,102)(66,101)(67,100)(68,99)(69,98)(70,97)(71,96)(72,95)(73,94)(74,93)(75,92)(76,117)(77,116)(78,115)(79,114)(80,113)(81,112)(82,111)(83,110)(84,109)(85,108)(86,107)(87,106)(88,120)(89,119)(90,118)>;

G:=Group( (1,110,47,84,17,92,39,61)(2,111,48,85,18,93,40,62)(3,112,49,86,19,94,41,63)(4,113,50,87,20,95,42,64)(5,114,51,88,21,96,43,65)(6,115,52,89,22,97,44,66)(7,116,53,90,23,98,45,67)(8,117,54,76,24,99,31,68)(9,118,55,77,25,100,32,69)(10,119,56,78,26,101,33,70)(11,120,57,79,27,102,34,71)(12,106,58,80,28,103,35,72)(13,107,59,81,29,104,36,73)(14,108,60,82,30,105,37,74)(15,109,46,83,16,91,38,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,17)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,60)(41,59)(42,58)(43,57)(44,56)(45,55)(61,91)(62,105)(63,104)(64,103)(65,102)(66,101)(67,100)(68,99)(69,98)(70,97)(71,96)(72,95)(73,94)(74,93)(75,92)(76,117)(77,116)(78,115)(79,114)(80,113)(81,112)(82,111)(83,110)(84,109)(85,108)(86,107)(87,106)(88,120)(89,119)(90,118) );

G=PermutationGroup([[(1,110,47,84,17,92,39,61),(2,111,48,85,18,93,40,62),(3,112,49,86,19,94,41,63),(4,113,50,87,20,95,42,64),(5,114,51,88,21,96,43,65),(6,115,52,89,22,97,44,66),(7,116,53,90,23,98,45,67),(8,117,54,76,24,99,31,68),(9,118,55,77,25,100,32,69),(10,119,56,78,26,101,33,70),(11,120,57,79,27,102,34,71),(12,106,58,80,28,103,35,72),(13,107,59,81,29,104,36,73),(14,108,60,82,30,105,37,74),(15,109,46,83,16,91,38,75)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,17),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,60),(41,59),(42,58),(43,57),(44,56),(45,55),(61,91),(62,105),(63,104),(64,103),(65,102),(66,101),(67,100),(68,99),(69,98),(70,97),(71,96),(72,95),(73,94),(74,93),(75,92),(76,117),(77,116),(78,115),(79,114),(80,113),(81,112),(82,111),(83,110),(84,109),(85,108),(86,107),(87,106),(88,120),(89,119),(90,118)]])

C24⋊D5 is a maximal subgroup of
D5×C24⋊C2  D24⋊D5  S3×C40⋊C2  D40⋊S3  C24.2D10  Dic20⋊S3  C40.31D6  D6.1D20  C40.69D6  C8⋊D30  C8.D30  D8⋊D15  SD16×D15  D4.5D30  Q16⋊D15
C24⋊D5 is a maximal quotient of
Dic308C4  C12010C4  D608C4

63 conjugacy classes

class 1 2A2B 3 4A4B5A5B 6 8A8B10A10B12A12B15A15B15C15D20A20B20C20D24A24B24C24D30A30B30C30D40A···40H60A···60H120A···120P
order12234455688101012121515151520202020242424243030303040···4060···60120···120
size1160226022222222222222222222222222···22···22···2

63 irreducible representations

dim111122222222222222
type++++++++++++++
imageC1C2C2C2S3D4D5D6SD16D10D12D15D20C24⋊C2D30C40⋊C2D60C24⋊D5
kernelC24⋊D5C120Dic30D60C40C30C24C20C15C12C10C8C6C5C4C3C2C1
# reps1111112122244448816

Matrix representation of C24⋊D5 in GL2(𝔽241) generated by

13257
184147
,
94110
131161
,
1190
0240
G:=sub<GL(2,GF(241))| [132,184,57,147],[94,131,110,161],[1,0,190,240] >;

C24⋊D5 in GAP, Magma, Sage, TeX

C_{24}\rtimes D_5
% in TeX

G:=Group("C24:D5");
// GroupNames label

G:=SmallGroup(240,67);
// by ID

G=gap.SmallGroup(240,67);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,73,31,218,50,964,6917]);
// Polycyclic

G:=Group<a,b,c|a^8=b^15=c^2=1,a*b=b*a,c*a*c=a^3,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C24⋊D5 in TeX

׿
×
𝔽