Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C3⋊F5

Direct product G=N×Q with N=C2 and Q=C2×C3⋊F5
dρLabelID
C22×C3⋊F560C2^2xC3:F5240,201


Non-split extensions G=N.Q with N=C2 and Q=C2×C3⋊F5
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C3⋊F5) = C60.C4central extension (φ=1)1204C2.1(C2xC3:F5)240,118
C2.2(C2×C3⋊F5) = C4×C3⋊F5central extension (φ=1)604C2.2(C2xC3:F5)240,120
C2.3(C2×C3⋊F5) = C2×C15⋊C8central extension (φ=1)240C2.3(C2xC3:F5)240,122
C2.4(C2×C3⋊F5) = C12.F5central stem extension (φ=1)1204C2.4(C2xC3:F5)240,119
C2.5(C2×C3⋊F5) = C60⋊C4central stem extension (φ=1)604C2.5(C2xC3:F5)240,121
C2.6(C2×C3⋊F5) = C158M4(2)central stem extension (φ=1)1204C2.6(C2xC3:F5)240,123
C2.7(C2×C3⋊F5) = D10.D6central stem extension (φ=1)604C2.7(C2xC3:F5)240,124

׿
×
𝔽