Copied to
clipboard

G = C4×C3⋊F5order 240 = 24·3·5

Direct product of C4 and C3⋊F5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4×C3⋊F5, C602C4, C122F5, C152C42, C202Dic3, D10.12D6, Dic52Dic3, C31(C4×F5), C52(C4×Dic3), (C4×D5).6S3, D5.2(C4×S3), C6.10(C2×F5), C30.10(C2×C4), (C3×Dic5)⋊4C4, (D5×C12).9C2, C10.3(C2×Dic3), (C6×D5).19C22, C2.2(C2×C3⋊F5), (C2×C3⋊F5).4C2, (C3×D5).2(C2×C4), SmallGroup(240,120)

Series: Derived Chief Lower central Upper central

C1C15 — C4×C3⋊F5
C1C5C15C3×D5C6×D5C2×C3⋊F5 — C4×C3⋊F5
C15 — C4×C3⋊F5
C1C4

Generators and relations for C4×C3⋊F5
 G = < a,b,c,d | a4=b3=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 240 in 60 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C2×C4, D5, C10, Dic3, C12, C12, C2×C6, C15, C42, Dic5, C20, F5, D10, C2×Dic3, C2×C12, C3×D5, C30, C4×D5, C2×F5, C4×Dic3, C3×Dic5, C60, C3⋊F5, C6×D5, C4×F5, D5×C12, C2×C3⋊F5, C4×C3⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C42, F5, C4×S3, C2×Dic3, C2×F5, C4×Dic3, C3⋊F5, C4×F5, C2×C3⋊F5, C4×C3⋊F5

Smallest permutation representation of C4×C3⋊F5
On 60 points
Generators in S60
(1 49 19 34)(2 50 20 35)(3 46 16 31)(4 47 17 32)(5 48 18 33)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(2 3 5 4)(6 13 7 15)(8 12 10 11)(9 14)(16 18 17 20)(21 28 22 30)(23 27 25 26)(24 29)(31 33 32 35)(36 43 37 45)(38 42 40 41)(39 44)(46 48 47 50)(51 58 52 60)(53 57 55 56)(54 59)

G:=sub<Sym(60)| (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (2,3,5,4)(6,13,7,15)(8,12,10,11)(9,14)(16,18,17,20)(21,28,22,30)(23,27,25,26)(24,29)(31,33,32,35)(36,43,37,45)(38,42,40,41)(39,44)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59)>;

G:=Group( (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (2,3,5,4)(6,13,7,15)(8,12,10,11)(9,14)(16,18,17,20)(21,28,22,30)(23,27,25,26)(24,29)(31,33,32,35)(36,43,37,45)(38,42,40,41)(39,44)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59) );

G=PermutationGroup([[(1,49,19,34),(2,50,20,35),(3,46,16,31),(4,47,17,32),(5,48,18,33),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(2,3,5,4),(6,13,7,15),(8,12,10,11),(9,14),(16,18,17,20),(21,28,22,30),(23,27,25,26),(24,29),(31,33,32,35),(36,43,37,45),(38,42,40,41),(39,44),(46,48,47,50),(51,58,52,60),(53,57,55,56),(54,59)]])

C4×C3⋊F5 is a maximal subgroup of
C30.C42  C30.4C42  D124F5  D602C4  C24⋊F5  Dic10⋊Dic3  D202Dic3  Dic65F5  (C4×S3)⋊F5  C4×S3×F5  D603C4  (C2×C12)⋊6F5
C4×C3⋊F5 is a maximal quotient of
C24⋊F5  C30.11C42  D10.10D12

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E···4L 5 6A6B6C 10 12A12B12C12D15A15B20A20B30A30B60A60B60C60D
order1222344444···45666101212121215152020303060606060
size11552115515···1542101042210104444444444

36 irreducible representations

dim11111122222444444
type++++--+++
imageC1C2C2C4C4C4S3Dic3Dic3D6C4×S3F5C2×F5C3⋊F5C4×F5C2×C3⋊F5C4×C3⋊F5
kernelC4×C3⋊F5D5×C12C2×C3⋊F5C3×Dic5C60C3⋊F5C4×D5Dic5C20D10D5C12C6C4C3C2C1
# reps11222811114112224

Matrix representation of C4×C3⋊F5 in GL4(𝔽61) generated by

50000
05000
00500
00050
,
2705555
63360
06336
5555027
,
0100
0010
0001
60606060
,
1000
0001
0100
60606060
G:=sub<GL(4,GF(61))| [50,0,0,0,0,50,0,0,0,0,50,0,0,0,0,50],[27,6,0,55,0,33,6,55,55,6,33,0,55,0,6,27],[0,0,0,60,1,0,0,60,0,1,0,60,0,0,1,60],[1,0,0,60,0,0,1,60,0,0,0,60,0,1,0,60] >;

C4×C3⋊F5 in GAP, Magma, Sage, TeX

C_4\times C_3\rtimes F_5
% in TeX

G:=Group("C4xC3:F5");
// GroupNames label

G:=SmallGroup(240,120);
// by ID

G=gap.SmallGroup(240,120);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,55,964,5189,1745]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^3=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽