direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×C3⋊F5, C60⋊2C4, C12⋊2F5, C15⋊2C42, C20⋊2Dic3, D10.12D6, Dic5⋊2Dic3, C3⋊1(C4×F5), C5⋊2(C4×Dic3), (C4×D5).6S3, D5.2(C4×S3), C6.10(C2×F5), C30.10(C2×C4), (C3×Dic5)⋊4C4, (D5×C12).9C2, C10.3(C2×Dic3), (C6×D5).19C22, C2.2(C2×C3⋊F5), (C2×C3⋊F5).4C2, (C3×D5).2(C2×C4), SmallGroup(240,120)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — C4×C3⋊F5 |
Generators and relations for C4×C3⋊F5
G = < a,b,c,d | a4=b3=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >
Subgroups: 240 in 60 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C2×C4, D5, C10, Dic3, C12, C12, C2×C6, C15, C42, Dic5, C20, F5, D10, C2×Dic3, C2×C12, C3×D5, C30, C4×D5, C2×F5, C4×Dic3, C3×Dic5, C60, C3⋊F5, C6×D5, C4×F5, D5×C12, C2×C3⋊F5, C4×C3⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C42, F5, C4×S3, C2×Dic3, C2×F5, C4×Dic3, C3⋊F5, C4×F5, C2×C3⋊F5, C4×C3⋊F5
(1 49 19 34)(2 50 20 35)(3 46 16 31)(4 47 17 32)(5 48 18 33)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(2 3 5 4)(6 13 7 15)(8 12 10 11)(9 14)(16 18 17 20)(21 28 22 30)(23 27 25 26)(24 29)(31 33 32 35)(36 43 37 45)(38 42 40 41)(39 44)(46 48 47 50)(51 58 52 60)(53 57 55 56)(54 59)
G:=sub<Sym(60)| (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (2,3,5,4)(6,13,7,15)(8,12,10,11)(9,14)(16,18,17,20)(21,28,22,30)(23,27,25,26)(24,29)(31,33,32,35)(36,43,37,45)(38,42,40,41)(39,44)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59)>;
G:=Group( (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (2,3,5,4)(6,13,7,15)(8,12,10,11)(9,14)(16,18,17,20)(21,28,22,30)(23,27,25,26)(24,29)(31,33,32,35)(36,43,37,45)(38,42,40,41)(39,44)(46,48,47,50)(51,58,52,60)(53,57,55,56)(54,59) );
G=PermutationGroup([[(1,49,19,34),(2,50,20,35),(3,46,16,31),(4,47,17,32),(5,48,18,33),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(2,3,5,4),(6,13,7,15),(8,12,10,11),(9,14),(16,18,17,20),(21,28,22,30),(23,27,25,26),(24,29),(31,33,32,35),(36,43,37,45),(38,42,40,41),(39,44),(46,48,47,50),(51,58,52,60),(53,57,55,56),(54,59)]])
C4×C3⋊F5 is a maximal subgroup of
C30.C42 C30.4C42 D12⋊4F5 D60⋊2C4 C24⋊F5 Dic10⋊Dic3 D20⋊2Dic3 Dic6⋊5F5 (C4×S3)⋊F5 C4×S3×F5 D60⋊3C4 (C2×C12)⋊6F5
C4×C3⋊F5 is a maximal quotient of
C24⋊F5 C30.11C42 D10.10D12
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 5 | 6A | 6B | 6C | 10 | 12A | 12B | 12C | 12D | 15A | 15B | 20A | 20B | 30A | 30B | 60A | 60B | 60C | 60D |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 6 | 6 | 6 | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 20 | 20 | 30 | 30 | 60 | 60 | 60 | 60 |
size | 1 | 1 | 5 | 5 | 2 | 1 | 1 | 5 | 5 | 15 | ··· | 15 | 4 | 2 | 10 | 10 | 4 | 2 | 2 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | - | - | + | + | + | ||||||||
image | C1 | C2 | C2 | C4 | C4 | C4 | S3 | Dic3 | Dic3 | D6 | C4×S3 | F5 | C2×F5 | C3⋊F5 | C4×F5 | C2×C3⋊F5 | C4×C3⋊F5 |
kernel | C4×C3⋊F5 | D5×C12 | C2×C3⋊F5 | C3×Dic5 | C60 | C3⋊F5 | C4×D5 | Dic5 | C20 | D10 | D5 | C12 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 8 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of C4×C3⋊F5 ►in GL4(𝔽61) generated by
50 | 0 | 0 | 0 |
0 | 50 | 0 | 0 |
0 | 0 | 50 | 0 |
0 | 0 | 0 | 50 |
27 | 0 | 55 | 55 |
6 | 33 | 6 | 0 |
0 | 6 | 33 | 6 |
55 | 55 | 0 | 27 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
60 | 60 | 60 | 60 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
60 | 60 | 60 | 60 |
G:=sub<GL(4,GF(61))| [50,0,0,0,0,50,0,0,0,0,50,0,0,0,0,50],[27,6,0,55,0,33,6,55,55,6,33,0,55,0,6,27],[0,0,0,60,1,0,0,60,0,1,0,60,0,0,1,60],[1,0,0,60,0,0,1,60,0,0,0,60,0,1,0,60] >;
C4×C3⋊F5 in GAP, Magma, Sage, TeX
C_4\times C_3\rtimes F_5
% in TeX
G:=Group("C4xC3:F5");
// GroupNames label
G:=SmallGroup(240,120);
// by ID
G=gap.SmallGroup(240,120);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,55,964,5189,1745]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^3=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations