Extensions 1→N→G→Q→1 with N=C3×D5 and Q=D4

Direct product G=N×Q with N=C3×D5 and Q=D4
dρLabelID
C3×D4×D5604C3xD4xD5240,159

Semidirect products G=N:Q with N=C3×D5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×D5)⋊1D4 = D5×D12φ: D4/C4C2 ⊆ Out C3×D5604+(C3xD5):1D4240,136
(C3×D5)⋊2D4 = D5×C3⋊D4φ: D4/C22C2 ⊆ Out C3×D5604(C3xD5):2D4240,149

Non-split extensions G=N.Q with N=C3×D5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×D5).1D4 = D6⋊F5φ: D4/C2C22 ⊆ Out C3×D5608+(C3xD5).1D4240,96
(C3×D5).2D4 = Dic3⋊F5φ: D4/C2C22 ⊆ Out C3×D5608-(C3xD5).2D4240,97
(C3×D5).3D4 = C60⋊C4φ: D4/C4C2 ⊆ Out C3×D5604(C3xD5).3D4240,121
(C3×D5).4D4 = C3×C4⋊F5φ: D4/C4C2 ⊆ Out C3×D5604(C3xD5).4D4240,114
(C3×D5).5D4 = D10.D6φ: D4/C22C2 ⊆ Out C3×D5604(C3xD5).5D4240,124
(C3×D5).6D4 = C3×C22⋊F5φ: D4/C22C2 ⊆ Out C3×D5604(C3xD5).6D4240,117

׿
×
𝔽