Copied to
clipboard

G = D5xC3:D4order 240 = 24·3·5

Direct product of D5 and C3:D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5xC3:D4, D6:3D10, D10:7D6, Dic3:1D10, D30:3C22, C30.25C23, Dic15:1C22, C3:5(D4xD5), C15:7(C2xD4), (C3xD5):2D4, (C2xC6):5D10, (C2xC10):4D6, C15:D4:5C2, C15:7D4:5C2, C3:D20:5C2, C22:3(S3xD5), (C2xC30):2C22, (D5xDic3):5C2, (C22xD5):4S3, (C6xD5):7C22, (S3xC10):3C22, C6.25(C22xD5), C10.25(C22xS3), (C5xDic3):1C22, (D5xC2xC6):3C2, (C2xS3xD5):4C2, C5:2(C2xC3:D4), C2.25(C2xS3xD5), (C5xC3:D4):3C2, SmallGroup(240,149)

Series: Derived Chief Lower central Upper central

C1C30 — D5xC3:D4
C1C5C15C30C6xD5C2xS3xD5 — D5xC3:D4
C15C30 — D5xC3:D4
C1C2C22

Generators and relations for D5xC3:D4
 G = < a,b,c,d,e | a5=b2=c3=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 528 in 108 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2xC4, D4, C23, D5, D5, C10, C10, Dic3, Dic3, D6, D6, C2xC6, C2xC6, C15, C2xD4, Dic5, C20, D10, D10, C2xC10, C2xC10, C2xDic3, C3:D4, C3:D4, C22xS3, C22xC6, C5xS3, C3xD5, C3xD5, D15, C30, C30, C4xD5, D20, C5:D4, C5xD4, C22xD5, C22xD5, C2xC3:D4, C5xDic3, Dic15, S3xD5, C6xD5, C6xD5, S3xC10, D30, C2xC30, D4xD5, D5xDic3, C15:D4, C3:D20, C5xC3:D4, C15:7D4, C2xS3xD5, D5xC2xC6, D5xC3:D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2xD4, D10, C3:D4, C22xS3, C22xD5, C2xC3:D4, S3xD5, D4xD5, C2xS3xD5, D5xC3:D4

Smallest permutation representation of D5xC3:D4
On 60 points
Generators in S60
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 18)(2 17)(3 16)(4 20)(5 19)(6 21)(7 25)(8 24)(9 23)(10 22)(11 26)(12 30)(13 29)(14 28)(15 27)(31 46)(32 50)(33 49)(34 48)(35 47)(36 51)(37 55)(38 54)(39 53)(40 52)(41 56)(42 60)(43 59)(44 58)(45 57)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(1 34 19 49)(2 35 20 50)(3 31 16 46)(4 32 17 47)(5 33 18 48)(6 41 21 56)(7 42 22 57)(8 43 23 58)(9 44 24 59)(10 45 25 60)(11 36 26 51)(12 37 27 52)(13 38 28 53)(14 39 29 54)(15 40 30 55)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 56)(37 57)(38 58)(39 59)(40 60)(41 51)(42 52)(43 53)(44 54)(45 55)

G:=sub<Sym(60)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,18)(2,17)(3,16)(4,20)(5,19)(6,21)(7,25)(8,24)(9,23)(10,22)(11,26)(12,30)(13,29)(14,28)(15,27)(31,46)(32,50)(33,49)(34,48)(35,47)(36,51)(37,55)(38,54)(39,53)(40,52)(41,56)(42,60)(43,59)(44,58)(45,57), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,34,19,49)(2,35,20,50)(3,31,16,46)(4,32,17,47)(5,33,18,48)(6,41,21,56)(7,42,22,57)(8,43,23,58)(9,44,24,59)(10,45,25,60)(11,36,26,51)(12,37,27,52)(13,38,28,53)(14,39,29,54)(15,40,30,55), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,18)(2,17)(3,16)(4,20)(5,19)(6,21)(7,25)(8,24)(9,23)(10,22)(11,26)(12,30)(13,29)(14,28)(15,27)(31,46)(32,50)(33,49)(34,48)(35,47)(36,51)(37,55)(38,54)(39,53)(40,52)(41,56)(42,60)(43,59)(44,58)(45,57), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,34,19,49)(2,35,20,50)(3,31,16,46)(4,32,17,47)(5,33,18,48)(6,41,21,56)(7,42,22,57)(8,43,23,58)(9,44,24,59)(10,45,25,60)(11,36,26,51)(12,37,27,52)(13,38,28,53)(14,39,29,54)(15,40,30,55), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,18),(2,17),(3,16),(4,20),(5,19),(6,21),(7,25),(8,24),(9,23),(10,22),(11,26),(12,30),(13,29),(14,28),(15,27),(31,46),(32,50),(33,49),(34,48),(35,47),(36,51),(37,55),(38,54),(39,53),(40,52),(41,56),(42,60),(43,59),(44,58),(45,57)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(1,34,19,49),(2,35,20,50),(3,31,16,46),(4,32,17,47),(5,33,18,48),(6,41,21,56),(7,42,22,57),(8,43,23,58),(9,44,24,59),(10,45,25,60),(11,36,26,51),(12,37,27,52),(13,38,28,53),(14,39,29,54),(15,40,30,55)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,56),(37,57),(38,58),(39,59),(40,60),(41,51),(42,52),(43,53),(44,54),(45,55)]])

D5xC3:D4 is a maximal subgroup of
C3:D4:F5  D20:25D6  S3xD4xD5  D20:13D6  D20:14D6  C15:2+ 1+4
D5xC3:D4 is a maximal quotient of
(C2xC20).D6  Dic15:1Q8  Dic3:C4:D5  D10:Dic6  (C6xD5).D4  Dic15:D4  Dic3:D20  D6:1Dic10  D30:Q8  D6:(C4xD5)  C15:20(C4xD4)  D6:C4:D5  D10:D12  D6:4D20  Dic10:3D6  C60.8C23  D12:10D10  D12.24D10  D20.9D6  C60.16C23  D20:D6  D20.13D6  D12.27D10  D20.14D6  C60.39C23  D20.D6  D30:6D4  C6.(D4xD5)  C23.17(S3xD5)  (C6xD5):D4  Dic15:3D4  C15:26(C4xD4)  (C2xC30):D4  (C2xC6):8D20  (S3xC10):D4  (C2xC10):4D12  Dic15:5D4  (C2xC30):Q8  D30:8D4

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B6A6B6C6D6E6F6G10A10B10C10D10E10F15A15B20A20B30A···30F
order122222223445566666661010101010101515202030···30
size112556103026302222210101010224412124412124···4

36 irreducible representations

dim111111112222222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D5D6D6D10D10D10C3:D4S3xD5D4xD5C2xS3xD5D5xC3:D4
kernelD5xC3:D4D5xDic3C15:D4C3:D20C5xC3:D4C15:7D4C2xS3xD5D5xC2xC6C22xD5C3xD5C3:D4D10C2xC10Dic3D6C2xC6D5C22C3C2C1
# reps111111111222122242224

Matrix representation of D5xC3:D4 in GL4(F61) generated by

1000
0100
0001
006017
,
60000
06000
0001
0010
,
06000
16000
0010
0001
,
9900
185200
00600
00060
,
16000
06000
0010
0001
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,0,60,0,0,1,17],[60,0,0,0,0,60,0,0,0,0,0,1,0,0,1,0],[0,1,0,0,60,60,0,0,0,0,1,0,0,0,0,1],[9,18,0,0,9,52,0,0,0,0,60,0,0,0,0,60],[1,0,0,0,60,60,0,0,0,0,1,0,0,0,0,1] >;

D5xC3:D4 in GAP, Magma, Sage, TeX

D_5\times C_3\rtimes D_4
% in TeX

G:=Group("D5xC3:D4");
// GroupNames label

G:=SmallGroup(240,149);
// by ID

G=gap.SmallGroup(240,149);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,116,490,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^3=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<