Extensions 1→N→G→Q→1 with N=C10 and Q=D12

Direct product G=N×Q with N=C10 and Q=D12
dρLabelID
C10×D12120C10xD12240,167

Semidirect products G=N:Q with N=C10 and Q=D12
extensionφ:Q→Aut NdρLabelID
C101D12 = C2×D60φ: D12/C12C2 ⊆ Aut C10120C10:1D12240,177
C102D12 = C2×C5⋊D12φ: D12/D6C2 ⊆ Aut C10120C10:2D12240,147

Non-split extensions G=N.Q with N=C10 and Q=D12
extensionφ:Q→Aut NdρLabelID
C10.1D12 = C24⋊D5φ: D12/C12C2 ⊆ Aut C101202C10.1D12240,67
C10.2D12 = D120φ: D12/C12C2 ⊆ Aut C101202+C10.2D12240,68
C10.3D12 = Dic60φ: D12/C12C2 ⊆ Aut C102402-C10.3D12240,69
C10.4D12 = C605C4φ: D12/C12C2 ⊆ Aut C10240C10.4D12240,74
C10.5D12 = D303C4φ: D12/C12C2 ⊆ Aut C10120C10.5D12240,75
C10.6D12 = C5⋊D24φ: D12/D6C2 ⊆ Aut C101204+C10.6D12240,15
C10.7D12 = D12.D5φ: D12/D6C2 ⊆ Aut C101204-C10.7D12240,20
C10.8D12 = Dic6⋊D5φ: D12/D6C2 ⊆ Aut C101204+C10.8D12240,21
C10.9D12 = C5⋊Dic12φ: D12/D6C2 ⊆ Aut C102404-C10.9D12240,24
C10.10D12 = D6⋊Dic5φ: D12/D6C2 ⊆ Aut C10120C10.10D12240,27
C10.11D12 = D304C4φ: D12/D6C2 ⊆ Aut C10120C10.11D12240,28
C10.12D12 = C30.Q8φ: D12/D6C2 ⊆ Aut C10240C10.12D12240,29
C10.13D12 = C5×C24⋊C2central extension (φ=1)1202C10.13D12240,51
C10.14D12 = C5×D24central extension (φ=1)1202C10.14D12240,52
C10.15D12 = C5×Dic12central extension (φ=1)2402C10.15D12240,53
C10.16D12 = C5×C4⋊Dic3central extension (φ=1)240C10.16D12240,58
C10.17D12 = C5×D6⋊C4central extension (φ=1)120C10.17D12240,59

׿
×
𝔽