Copied to
clipboard

G = C7×C13⋊C3order 273 = 3·7·13

Direct product of C7 and C13⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary

Aliases: C7×C13⋊C3, C13⋊C21, C912C3, SmallGroup(273,2)

Series: Derived Chief Lower central Upper central

C1C13 — C7×C13⋊C3
C1C13C91 — C7×C13⋊C3
C13 — C7×C13⋊C3
C1C7

Generators and relations for C7×C13⋊C3
 G = < a,b,c | a7=b13=c3=1, ab=ba, ac=ca, cbc-1=b9 >

13C3
13C21

Smallest permutation representation of C7×C13⋊C3
On 91 points
Generators in S91
(1 79 66 53 40 27 14)(2 80 67 54 41 28 15)(3 81 68 55 42 29 16)(4 82 69 56 43 30 17)(5 83 70 57 44 31 18)(6 84 71 58 45 32 19)(7 85 72 59 46 33 20)(8 86 73 60 47 34 21)(9 87 74 61 48 35 22)(10 88 75 62 49 36 23)(11 89 76 63 50 37 24)(12 90 77 64 51 38 25)(13 91 78 65 52 39 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)(54 56 62)(55 59 58)(57 65 63)(60 61 64)(67 69 75)(68 72 71)(70 78 76)(73 74 77)(80 82 88)(81 85 84)(83 91 89)(86 87 90)

G:=sub<Sym(91)| (1,79,66,53,40,27,14)(2,80,67,54,41,28,15)(3,81,68,55,42,29,16)(4,82,69,56,43,30,17)(5,83,70,57,44,31,18)(6,84,71,58,45,32,19)(7,85,72,59,46,33,20)(8,86,73,60,47,34,21)(9,87,74,61,48,35,22)(10,88,75,62,49,36,23)(11,89,76,63,50,37,24)(12,90,77,64,51,38,25)(13,91,78,65,52,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)(67,69,75)(68,72,71)(70,78,76)(73,74,77)(80,82,88)(81,85,84)(83,91,89)(86,87,90)>;

G:=Group( (1,79,66,53,40,27,14)(2,80,67,54,41,28,15)(3,81,68,55,42,29,16)(4,82,69,56,43,30,17)(5,83,70,57,44,31,18)(6,84,71,58,45,32,19)(7,85,72,59,46,33,20)(8,86,73,60,47,34,21)(9,87,74,61,48,35,22)(10,88,75,62,49,36,23)(11,89,76,63,50,37,24)(12,90,77,64,51,38,25)(13,91,78,65,52,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)(67,69,75)(68,72,71)(70,78,76)(73,74,77)(80,82,88)(81,85,84)(83,91,89)(86,87,90) );

G=PermutationGroup([[(1,79,66,53,40,27,14),(2,80,67,54,41,28,15),(3,81,68,55,42,29,16),(4,82,69,56,43,30,17),(5,83,70,57,44,31,18),(6,84,71,58,45,32,19),(7,85,72,59,46,33,20),(8,86,73,60,47,34,21),(9,87,74,61,48,35,22),(10,88,75,62,49,36,23),(11,89,76,63,50,37,24),(12,90,77,64,51,38,25),(13,91,78,65,52,39,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51),(54,56,62),(55,59,58),(57,65,63),(60,61,64),(67,69,75),(68,72,71),(70,78,76),(73,74,77),(80,82,88),(81,85,84),(83,91,89),(86,87,90)]])

49 conjugacy classes

class 1 3A3B7A···7F13A13B13C13D21A···21L91A···91X
order1337···71313131321···2191···91
size113131···1333313···133···3

49 irreducible representations

dim111133
type+
imageC1C3C7C21C13⋊C3C7×C13⋊C3
kernelC7×C13⋊C3C91C13⋊C3C13C7C1
# reps12612424

Matrix representation of C7×C13⋊C3 in GL3(𝔽547) generated by

52000
05200
00520
,
2534641
100
010
,
100
82252464
72465294
G:=sub<GL(3,GF(547))| [520,0,0,0,520,0,0,0,520],[253,1,0,464,0,1,1,0,0],[1,82,72,0,252,465,0,464,294] >;

C7×C13⋊C3 in GAP, Magma, Sage, TeX

C_7\times C_{13}\rtimes C_3
% in TeX

G:=Group("C7xC13:C3");
// GroupNames label

G:=SmallGroup(273,2);
// by ID

G=gap.SmallGroup(273,2);
# by ID

G:=PCGroup([3,-3,-7,-13,569]);
// Polycyclic

G:=Group<a,b,c|a^7=b^13=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^9>;
// generators/relations

Export

Subgroup lattice of C7×C13⋊C3 in TeX

׿
×
𝔽