Copied to
clipboard

G = C914C3order 273 = 3·7·13

4th semidirect product of C91 and C3 acting faithfully

metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary

Aliases: C914C3, C72(C13⋊C3), C132(C7⋊C3), SmallGroup(273,4)

Series: Derived Chief Lower central Upper central

C1C91 — C914C3
C1C13C91 — C914C3
C91 — C914C3
C1

Generators and relations for C914C3
 G = < a,b | a91=b3=1, bab-1=a9 >

91C3
13C7⋊C3
7C13⋊C3

Smallest permutation representation of C914C3
On 91 points
Generators in S91
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91)
(2 82 10)(3 72 19)(4 62 28)(5 52 37)(6 42 46)(7 32 55)(8 22 64)(9 12 73)(11 83 91)(13 63 18)(14 53 27)(15 43 36)(16 33 45)(17 23 54)(20 84 81)(21 74 90)(24 44 26)(25 34 35)(29 85 71)(30 75 80)(31 65 89)(38 86 61)(39 76 70)(40 66 79)(41 56 88)(47 87 51)(48 77 60)(49 67 69)(50 57 78)(58 68 59)

G:=sub<Sym(91)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91), (2,82,10)(3,72,19)(4,62,28)(5,52,37)(6,42,46)(7,32,55)(8,22,64)(9,12,73)(11,83,91)(13,63,18)(14,53,27)(15,43,36)(16,33,45)(17,23,54)(20,84,81)(21,74,90)(24,44,26)(25,34,35)(29,85,71)(30,75,80)(31,65,89)(38,86,61)(39,76,70)(40,66,79)(41,56,88)(47,87,51)(48,77,60)(49,67,69)(50,57,78)(58,68,59)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91), (2,82,10)(3,72,19)(4,62,28)(5,52,37)(6,42,46)(7,32,55)(8,22,64)(9,12,73)(11,83,91)(13,63,18)(14,53,27)(15,43,36)(16,33,45)(17,23,54)(20,84,81)(21,74,90)(24,44,26)(25,34,35)(29,85,71)(30,75,80)(31,65,89)(38,86,61)(39,76,70)(40,66,79)(41,56,88)(47,87,51)(48,77,60)(49,67,69)(50,57,78)(58,68,59) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91)], [(2,82,10),(3,72,19),(4,62,28),(5,52,37),(6,42,46),(7,32,55),(8,22,64),(9,12,73),(11,83,91),(13,63,18),(14,53,27),(15,43,36),(16,33,45),(17,23,54),(20,84,81),(21,74,90),(24,44,26),(25,34,35),(29,85,71),(30,75,80),(31,65,89),(38,86,61),(39,76,70),(40,66,79),(41,56,88),(47,87,51),(48,77,60),(49,67,69),(50,57,78),(58,68,59)]])

33 conjugacy classes

class 1 3A3B7A7B13A13B13C13D91A···91X
order133771313131391···91
size191913333333···3

33 irreducible representations

dim11333
type+
imageC1C3C7⋊C3C13⋊C3C914C3
kernelC914C3C91C13C7C1
# reps122424

Matrix representation of C914C3 in GL3(𝔽547) generated by

3724509
9135462
462424204
,
100
365390181
97182156
G:=sub<GL(3,GF(547))| [372,9,462,450,135,424,9,462,204],[1,365,97,0,390,182,0,181,156] >;

C914C3 in GAP, Magma, Sage, TeX

C_{91}\rtimes_4C_3
% in TeX

G:=Group("C91:4C3");
// GroupNames label

G:=SmallGroup(273,4);
// by ID

G=gap.SmallGroup(273,4);
# by ID

G:=PCGroup([3,-3,-7,-13,73,569]);
// Polycyclic

G:=Group<a,b|a^91=b^3=1,b*a*b^-1=a^9>;
// generators/relations

Export

Subgroup lattice of C914C3 in TeX

׿
×
𝔽