Extensions 1→N→G→Q→1 with N=C11×Dic3 and Q=C2

Direct product G=N×Q with N=C11×Dic3 and Q=C2
dρLabelID
Dic3×C22264Dic3xC22264,21

Semidirect products G=N:Q with N=C11×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C11×Dic3)⋊1C2 = Dic3×D11φ: C2/C1C2 ⊆ Out C11×Dic31324-(C11xDic3):1C2264,5
(C11×Dic3)⋊2C2 = D33⋊C4φ: C2/C1C2 ⊆ Out C11×Dic31324+(C11xDic3):2C2264,7
(C11×Dic3)⋊3C2 = C3⋊D44φ: C2/C1C2 ⊆ Out C11×Dic31324+(C11xDic3):3C2264,9
(C11×Dic3)⋊4C2 = C11×C3⋊D4φ: C2/C1C2 ⊆ Out C11×Dic31322(C11xDic3):4C2264,22
(C11×Dic3)⋊5C2 = S3×C44φ: trivial image1322(C11xDic3):5C2264,19

Non-split extensions G=N.Q with N=C11×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C11×Dic3).1C2 = C33⋊Q8φ: C2/C1C2 ⊆ Out C11×Dic32644-(C11xDic3).1C2264,11
(C11×Dic3).2C2 = C11×Dic6φ: C2/C1C2 ⊆ Out C11×Dic32642(C11xDic3).2C2264,18

׿
×
𝔽