Copied to
clipboard

G = C3⋊D44order 264 = 23·3·11

The semidirect product of C3 and D44 acting via D44/D22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C332D4, C32D44, D222S3, D663C2, Dic3⋊D11, C22.5D6, C6.5D22, C66.5C22, (C6×D11)⋊2C2, C111(C3⋊D4), C2.5(S3×D11), (C11×Dic3)⋊3C2, SmallGroup(264,9)

Series: Derived Chief Lower central Upper central

C1C66 — C3⋊D44
C1C11C33C66C6×D11 — C3⋊D44
C33C66 — C3⋊D44
C1C2

Generators and relations for C3⋊D44
 G = < a,b,c | a3=b44=c2=1, bab-1=cac=a-1, cbc=b-1 >

22C2
66C2
3C4
11C22
33C22
22C6
22S3
2D11
6D11
33D4
11D6
11C2×C6
3C44
3D22
2C3×D11
2D33
11C3⋊D4
3D44

Smallest permutation representation of C3⋊D44
On 132 points
Generators in S132
(1 62 93)(2 94 63)(3 64 95)(4 96 65)(5 66 97)(6 98 67)(7 68 99)(8 100 69)(9 70 101)(10 102 71)(11 72 103)(12 104 73)(13 74 105)(14 106 75)(15 76 107)(16 108 77)(17 78 109)(18 110 79)(19 80 111)(20 112 81)(21 82 113)(22 114 83)(23 84 115)(24 116 85)(25 86 117)(26 118 87)(27 88 119)(28 120 45)(29 46 121)(30 122 47)(31 48 123)(32 124 49)(33 50 125)(34 126 51)(35 52 127)(36 128 53)(37 54 129)(38 130 55)(39 56 131)(40 132 57)(41 58 89)(42 90 59)(43 60 91)(44 92 61)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 44)(13 43)(14 42)(15 41)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(45 120)(46 119)(47 118)(48 117)(49 116)(50 115)(51 114)(52 113)(53 112)(54 111)(55 110)(56 109)(57 108)(58 107)(59 106)(60 105)(61 104)(62 103)(63 102)(64 101)(65 100)(66 99)(67 98)(68 97)(69 96)(70 95)(71 94)(72 93)(73 92)(74 91)(75 90)(76 89)(77 132)(78 131)(79 130)(80 129)(81 128)(82 127)(83 126)(84 125)(85 124)(86 123)(87 122)(88 121)

G:=sub<Sym(132)| (1,62,93)(2,94,63)(3,64,95)(4,96,65)(5,66,97)(6,98,67)(7,68,99)(8,100,69)(9,70,101)(10,102,71)(11,72,103)(12,104,73)(13,74,105)(14,106,75)(15,76,107)(16,108,77)(17,78,109)(18,110,79)(19,80,111)(20,112,81)(21,82,113)(22,114,83)(23,84,115)(24,116,85)(25,86,117)(26,118,87)(27,88,119)(28,120,45)(29,46,121)(30,122,47)(31,48,123)(32,124,49)(33,50,125)(34,126,51)(35,52,127)(36,128,53)(37,54,129)(38,130,55)(39,56,131)(40,132,57)(41,58,89)(42,90,59)(43,60,91)(44,92,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,11)(2,10)(3,9)(4,8)(5,7)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(45,120)(46,119)(47,118)(48,117)(49,116)(50,115)(51,114)(52,113)(53,112)(54,111)(55,110)(56,109)(57,108)(58,107)(59,106)(60,105)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,98)(68,97)(69,96)(70,95)(71,94)(72,93)(73,92)(74,91)(75,90)(76,89)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)>;

G:=Group( (1,62,93)(2,94,63)(3,64,95)(4,96,65)(5,66,97)(6,98,67)(7,68,99)(8,100,69)(9,70,101)(10,102,71)(11,72,103)(12,104,73)(13,74,105)(14,106,75)(15,76,107)(16,108,77)(17,78,109)(18,110,79)(19,80,111)(20,112,81)(21,82,113)(22,114,83)(23,84,115)(24,116,85)(25,86,117)(26,118,87)(27,88,119)(28,120,45)(29,46,121)(30,122,47)(31,48,123)(32,124,49)(33,50,125)(34,126,51)(35,52,127)(36,128,53)(37,54,129)(38,130,55)(39,56,131)(40,132,57)(41,58,89)(42,90,59)(43,60,91)(44,92,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,11)(2,10)(3,9)(4,8)(5,7)(12,44)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(45,120)(46,119)(47,118)(48,117)(49,116)(50,115)(51,114)(52,113)(53,112)(54,111)(55,110)(56,109)(57,108)(58,107)(59,106)(60,105)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,98)(68,97)(69,96)(70,95)(71,94)(72,93)(73,92)(74,91)(75,90)(76,89)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121) );

G=PermutationGroup([[(1,62,93),(2,94,63),(3,64,95),(4,96,65),(5,66,97),(6,98,67),(7,68,99),(8,100,69),(9,70,101),(10,102,71),(11,72,103),(12,104,73),(13,74,105),(14,106,75),(15,76,107),(16,108,77),(17,78,109),(18,110,79),(19,80,111),(20,112,81),(21,82,113),(22,114,83),(23,84,115),(24,116,85),(25,86,117),(26,118,87),(27,88,119),(28,120,45),(29,46,121),(30,122,47),(31,48,123),(32,124,49),(33,50,125),(34,126,51),(35,52,127),(36,128,53),(37,54,129),(38,130,55),(39,56,131),(40,132,57),(41,58,89),(42,90,59),(43,60,91),(44,92,61)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,44),(13,43),(14,42),(15,41),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(45,120),(46,119),(47,118),(48,117),(49,116),(50,115),(51,114),(52,113),(53,112),(54,111),(55,110),(56,109),(57,108),(58,107),(59,106),(60,105),(61,104),(62,103),(63,102),(64,101),(65,100),(66,99),(67,98),(68,97),(69,96),(70,95),(71,94),(72,93),(73,92),(74,91),(75,90),(76,89),(77,132),(78,131),(79,130),(80,129),(81,128),(82,127),(83,126),(84,125),(85,124),(86,123),(87,122),(88,121)]])

39 conjugacy classes

class 1 2A2B2C 3  4 6A6B6C11A···11E22A···22E33A···33E44A···44J66A···66E
order12223466611···1122···2233···3344···4466···66
size11226626222222···22···24···46···64···4

39 irreducible representations

dim1111222222244
type++++++++++++
imageC1C2C2C2S3D4D6D11C3⋊D4D22D44S3×D11C3⋊D44
kernelC3⋊D44C11×Dic3C6×D11D66D22C33C22Dic3C11C6C3C2C1
# reps11111115251055

Matrix representation of C3⋊D44 in GL4(𝔽397) generated by

1000
0100
001173
00257395
,
18524700
15010800
006918
00353328
,
18524700
11721200
003960
001401
G:=sub<GL(4,GF(397))| [1,0,0,0,0,1,0,0,0,0,1,257,0,0,173,395],[185,150,0,0,247,108,0,0,0,0,69,353,0,0,18,328],[185,117,0,0,247,212,0,0,0,0,396,140,0,0,0,1] >;

C3⋊D44 in GAP, Magma, Sage, TeX

C_3\rtimes D_{44}
% in TeX

G:=Group("C3:D44");
// GroupNames label

G:=SmallGroup(264,9);
// by ID

G=gap.SmallGroup(264,9);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-11,61,26,168,6004]);
// Polycyclic

G:=Group<a,b,c|a^3=b^44=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊D44 in TeX

׿
×
𝔽