Extensions 1→N→G→Q→1 with N=C7×Dic5 and Q=C2

Direct product G=N×Q with N=C7×Dic5 and Q=C2
dρLabelID
C14×Dic5280C14xDic5280,22

Semidirect products G=N:Q with N=C7×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Dic5)⋊1C2 = D7×Dic5φ: C2/C1C2 ⊆ Out C7×Dic51404-(C7xDic5):1C2280,7
(C7×Dic5)⋊2C2 = D70.C2φ: C2/C1C2 ⊆ Out C7×Dic51404+(C7xDic5):2C2280,9
(C7×Dic5)⋊3C2 = C5⋊D28φ: C2/C1C2 ⊆ Out C7×Dic51404+(C7xDic5):3C2280,11
(C7×Dic5)⋊4C2 = C7×C5⋊D4φ: C2/C1C2 ⊆ Out C7×Dic51402(C7xDic5):4C2280,23
(C7×Dic5)⋊5C2 = D5×C28φ: trivial image1402(C7xDic5):5C2280,20

Non-split extensions G=N.Q with N=C7×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Dic5).1C2 = C35⋊Q8φ: C2/C1C2 ⊆ Out C7×Dic52804-(C7xDic5).1C2280,13
(C7×Dic5).2C2 = C35⋊C8φ: C2/C1C2 ⊆ Out C7×Dic52804(C7xDic5).2C2280,6
(C7×Dic5).3C2 = C7×Dic10φ: C2/C1C2 ⊆ Out C7×Dic52802(C7xDic5).3C2280,19
(C7×Dic5).4C2 = C7×C5⋊C8φ: C2/C1C2 ⊆ Out C7×Dic52804(C7xDic5).4C2280,5

׿
×
𝔽