direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D7×Dic5, D14.D5, C14.1D10, C10.1D14, Dic35⋊2C2, C70.1C22, C5⋊4(C4×D7), C35⋊4(C2×C4), (C5×D7)⋊2C4, (C10×D7).C2, C2.1(D5×D7), C7⋊1(C2×Dic5), (C7×Dic5)⋊1C2, SmallGroup(280,7)
Series: Derived ►Chief ►Lower central ►Upper central
| C35 — D7×Dic5 |
Generators and relations for D7×Dic5
G = < a,b,c,d | a7=b2=c10=1, d2=c5, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
(1 76 128 96 112 104 88)(2 77 129 97 113 105 89)(3 78 130 98 114 106 90)(4 79 121 99 115 107 81)(5 80 122 100 116 108 82)(6 71 123 91 117 109 83)(7 72 124 92 118 110 84)(8 73 125 93 119 101 85)(9 74 126 94 120 102 86)(10 75 127 95 111 103 87)(11 43 27 132 51 37 63)(12 44 28 133 52 38 64)(13 45 29 134 53 39 65)(14 46 30 135 54 40 66)(15 47 21 136 55 31 67)(16 48 22 137 56 32 68)(17 49 23 138 57 33 69)(18 50 24 139 58 34 70)(19 41 25 140 59 35 61)(20 42 26 131 60 36 62)
(1 88)(2 89)(3 90)(4 81)(5 82)(6 83)(7 84)(8 85)(9 86)(10 87)(11 27)(12 28)(13 29)(14 30)(15 21)(16 22)(17 23)(18 24)(19 25)(20 26)(31 55)(32 56)(33 57)(34 58)(35 59)(36 60)(37 51)(38 52)(39 53)(40 54)(61 140)(62 131)(63 132)(64 133)(65 134)(66 135)(67 136)(68 137)(69 138)(70 139)(71 109)(72 110)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(111 127)(112 128)(113 129)(114 130)(115 121)(116 122)(117 123)(118 124)(119 125)(120 126)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)
(1 34 6 39)(2 33 7 38)(3 32 8 37)(4 31 9 36)(5 40 10 35)(11 130 16 125)(12 129 17 124)(13 128 18 123)(14 127 19 122)(15 126 20 121)(21 120 26 115)(22 119 27 114)(23 118 28 113)(24 117 29 112)(25 116 30 111)(41 100 46 95)(42 99 47 94)(43 98 48 93)(44 97 49 92)(45 96 50 91)(51 90 56 85)(52 89 57 84)(53 88 58 83)(54 87 59 82)(55 86 60 81)(61 80 66 75)(62 79 67 74)(63 78 68 73)(64 77 69 72)(65 76 70 71)(101 132 106 137)(102 131 107 136)(103 140 108 135)(104 139 109 134)(105 138 110 133)
G:=sub<Sym(140)| (1,76,128,96,112,104,88)(2,77,129,97,113,105,89)(3,78,130,98,114,106,90)(4,79,121,99,115,107,81)(5,80,122,100,116,108,82)(6,71,123,91,117,109,83)(7,72,124,92,118,110,84)(8,73,125,93,119,101,85)(9,74,126,94,120,102,86)(10,75,127,95,111,103,87)(11,43,27,132,51,37,63)(12,44,28,133,52,38,64)(13,45,29,134,53,39,65)(14,46,30,135,54,40,66)(15,47,21,136,55,31,67)(16,48,22,137,56,32,68)(17,49,23,138,57,33,69)(18,50,24,139,58,34,70)(19,41,25,140,59,35,61)(20,42,26,131,60,36,62), (1,88)(2,89)(3,90)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,51)(38,52)(39,53)(40,54)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,109)(72,110)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(111,127)(112,128)(113,129)(114,130)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140), (1,34,6,39)(2,33,7,38)(3,32,8,37)(4,31,9,36)(5,40,10,35)(11,130,16,125)(12,129,17,124)(13,128,18,123)(14,127,19,122)(15,126,20,121)(21,120,26,115)(22,119,27,114)(23,118,28,113)(24,117,29,112)(25,116,30,111)(41,100,46,95)(42,99,47,94)(43,98,48,93)(44,97,49,92)(45,96,50,91)(51,90,56,85)(52,89,57,84)(53,88,58,83)(54,87,59,82)(55,86,60,81)(61,80,66,75)(62,79,67,74)(63,78,68,73)(64,77,69,72)(65,76,70,71)(101,132,106,137)(102,131,107,136)(103,140,108,135)(104,139,109,134)(105,138,110,133)>;
G:=Group( (1,76,128,96,112,104,88)(2,77,129,97,113,105,89)(3,78,130,98,114,106,90)(4,79,121,99,115,107,81)(5,80,122,100,116,108,82)(6,71,123,91,117,109,83)(7,72,124,92,118,110,84)(8,73,125,93,119,101,85)(9,74,126,94,120,102,86)(10,75,127,95,111,103,87)(11,43,27,132,51,37,63)(12,44,28,133,52,38,64)(13,45,29,134,53,39,65)(14,46,30,135,54,40,66)(15,47,21,136,55,31,67)(16,48,22,137,56,32,68)(17,49,23,138,57,33,69)(18,50,24,139,58,34,70)(19,41,25,140,59,35,61)(20,42,26,131,60,36,62), (1,88)(2,89)(3,90)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,51)(38,52)(39,53)(40,54)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,109)(72,110)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(111,127)(112,128)(113,129)(114,130)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140), (1,34,6,39)(2,33,7,38)(3,32,8,37)(4,31,9,36)(5,40,10,35)(11,130,16,125)(12,129,17,124)(13,128,18,123)(14,127,19,122)(15,126,20,121)(21,120,26,115)(22,119,27,114)(23,118,28,113)(24,117,29,112)(25,116,30,111)(41,100,46,95)(42,99,47,94)(43,98,48,93)(44,97,49,92)(45,96,50,91)(51,90,56,85)(52,89,57,84)(53,88,58,83)(54,87,59,82)(55,86,60,81)(61,80,66,75)(62,79,67,74)(63,78,68,73)(64,77,69,72)(65,76,70,71)(101,132,106,137)(102,131,107,136)(103,140,108,135)(104,139,109,134)(105,138,110,133) );
G=PermutationGroup([[(1,76,128,96,112,104,88),(2,77,129,97,113,105,89),(3,78,130,98,114,106,90),(4,79,121,99,115,107,81),(5,80,122,100,116,108,82),(6,71,123,91,117,109,83),(7,72,124,92,118,110,84),(8,73,125,93,119,101,85),(9,74,126,94,120,102,86),(10,75,127,95,111,103,87),(11,43,27,132,51,37,63),(12,44,28,133,52,38,64),(13,45,29,134,53,39,65),(14,46,30,135,54,40,66),(15,47,21,136,55,31,67),(16,48,22,137,56,32,68),(17,49,23,138,57,33,69),(18,50,24,139,58,34,70),(19,41,25,140,59,35,61),(20,42,26,131,60,36,62)], [(1,88),(2,89),(3,90),(4,81),(5,82),(6,83),(7,84),(8,85),(9,86),(10,87),(11,27),(12,28),(13,29),(14,30),(15,21),(16,22),(17,23),(18,24),(19,25),(20,26),(31,55),(32,56),(33,57),(34,58),(35,59),(36,60),(37,51),(38,52),(39,53),(40,54),(61,140),(62,131),(63,132),(64,133),(65,134),(66,135),(67,136),(68,137),(69,138),(70,139),(71,109),(72,110),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(111,127),(112,128),(113,129),(114,130),(115,121),(116,122),(117,123),(118,124),(119,125),(120,126)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140)], [(1,34,6,39),(2,33,7,38),(3,32,8,37),(4,31,9,36),(5,40,10,35),(11,130,16,125),(12,129,17,124),(13,128,18,123),(14,127,19,122),(15,126,20,121),(21,120,26,115),(22,119,27,114),(23,118,28,113),(24,117,29,112),(25,116,30,111),(41,100,46,95),(42,99,47,94),(43,98,48,93),(44,97,49,92),(45,96,50,91),(51,90,56,85),(52,89,57,84),(53,88,58,83),(54,87,59,82),(55,86,60,81),(61,80,66,75),(62,79,67,74),(63,78,68,73),(64,77,69,72),(65,76,70,71),(101,132,106,137),(102,131,107,136),(103,140,108,135),(104,139,109,134),(105,138,110,133)]])
40 conjugacy classes
| class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5A | 5B | 7A | 7B | 7C | 10A | 10B | 10C | 10D | 10E | 10F | 14A | 14B | 14C | 28A | ··· | 28F | 35A | ··· | 35F | 70A | ··· | 70F |
| order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 7 | 7 | 7 | 10 | 10 | 10 | 10 | 10 | 10 | 14 | 14 | 14 | 28 | ··· | 28 | 35 | ··· | 35 | 70 | ··· | 70 |
| size | 1 | 1 | 7 | 7 | 5 | 5 | 35 | 35 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 14 | 14 | 14 | 14 | 2 | 2 | 2 | 10 | ··· | 10 | 4 | ··· | 4 | 4 | ··· | 4 |
40 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | - | + | + | + | - | ||
| image | C1 | C2 | C2 | C2 | C4 | D5 | D7 | Dic5 | D10 | D14 | C4×D7 | D5×D7 | D7×Dic5 |
| kernel | D7×Dic5 | C7×Dic5 | Dic35 | C10×D7 | C5×D7 | D14 | Dic5 | D7 | C14 | C10 | C5 | C2 | C1 |
| # reps | 1 | 1 | 1 | 1 | 4 | 2 | 3 | 4 | 2 | 3 | 6 | 6 | 6 |
Matrix representation of D7×Dic5 ►in GL4(𝔽281) generated by
| 0 | 1 | 0 | 0 |
| 280 | 47 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 280 | 0 | 0 | 0 |
| 0 | 280 | 0 | 0 |
| 0 | 0 | 280 | 45 |
| 0 | 0 | 124 | 39 |
| 53 | 0 | 0 | 0 |
| 0 | 53 | 0 | 0 |
| 0 | 0 | 88 | 152 |
| 0 | 0 | 84 | 193 |
G:=sub<GL(4,GF(281))| [0,280,0,0,1,47,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[280,0,0,0,0,280,0,0,0,0,280,124,0,0,45,39],[53,0,0,0,0,53,0,0,0,0,88,84,0,0,152,193] >;
D7×Dic5 in GAP, Magma, Sage, TeX
D_7\times {\rm Dic}_5 % in TeX
G:=Group("D7xDic5"); // GroupNames label
G:=SmallGroup(280,7);
// by ID
G=gap.SmallGroup(280,7);
# by ID
G:=PCGroup([5,-2,-2,-2,-5,-7,26,328,6004]);
// Polycyclic
G:=Group<a,b,c,d|a^7=b^2=c^10=1,d^2=c^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export