Extensions 1→N→G→Q→1 with N=C136 and Q=C2

Direct product G=NxQ with N=C136 and Q=C2
dρLabelID
C2xC136272C2xC136272,23

Semidirect products G=N:Q with N=C136 and Q=C2
extensionφ:Q→Aut NdρLabelID
C136:1C2 = D136φ: C2/C1C2 ⊆ Aut C1361362+C136:1C2272,7
C136:2C2 = C136:C2φ: C2/C1C2 ⊆ Aut C1361362C136:2C2272,6
C136:3C2 = C8xD17φ: C2/C1C2 ⊆ Aut C1361362C136:3C2272,4
C136:4C2 = C8:D17φ: C2/C1C2 ⊆ Aut C1361362C136:4C2272,5
C136:5C2 = D8xC17φ: C2/C1C2 ⊆ Aut C1361362C136:5C2272,25
C136:6C2 = SD16xC17φ: C2/C1C2 ⊆ Aut C1361362C136:6C2272,26
C136:7C2 = M4(2)xC17φ: C2/C1C2 ⊆ Aut C1361362C136:7C2272,24

Non-split extensions G=N.Q with N=C136 and Q=C2
extensionφ:Q→Aut NdρLabelID
C136.1C2 = Dic68φ: C2/C1C2 ⊆ Aut C1362722-C136.1C2272,8
C136.2C2 = C17:4C16φ: C2/C1C2 ⊆ Aut C1362722C136.2C2272,1
C136.3C2 = Q16xC17φ: C2/C1C2 ⊆ Aut C1362722C136.3C2272,27

׿
x
:
Z
F
o
wr
Q
<