Extensions 1→N→G→Q→1 with N=C136 and Q=C2

Direct product G=N×Q with N=C136 and Q=C2
dρLabelID
C2×C136272C2xC136272,23

Semidirect products G=N:Q with N=C136 and Q=C2
extensionφ:Q→Aut NdρLabelID
C1361C2 = D136φ: C2/C1C2 ⊆ Aut C1361362+C136:1C2272,7
C1362C2 = C136⋊C2φ: C2/C1C2 ⊆ Aut C1361362C136:2C2272,6
C1363C2 = C8×D17φ: C2/C1C2 ⊆ Aut C1361362C136:3C2272,4
C1364C2 = C8⋊D17φ: C2/C1C2 ⊆ Aut C1361362C136:4C2272,5
C1365C2 = D8×C17φ: C2/C1C2 ⊆ Aut C1361362C136:5C2272,25
C1366C2 = SD16×C17φ: C2/C1C2 ⊆ Aut C1361362C136:6C2272,26
C1367C2 = M4(2)×C17φ: C2/C1C2 ⊆ Aut C1361362C136:7C2272,24

Non-split extensions G=N.Q with N=C136 and Q=C2
extensionφ:Q→Aut NdρLabelID
C136.1C2 = Dic68φ: C2/C1C2 ⊆ Aut C1362722-C136.1C2272,8
C136.2C2 = C174C16φ: C2/C1C2 ⊆ Aut C1362722C136.2C2272,1
C136.3C2 = Q16×C17φ: C2/C1C2 ⊆ Aut C1362722C136.3C2272,27

׿
×
𝔽