metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D136, C17⋊1D8, C8⋊1D17, C136⋊1C2, D68⋊1C2, C4.9D34, C2.4D68, C34.2D4, C68.9C22, sometimes denoted D272 or Dih136 or Dih272, SmallGroup(272,7)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D136
G = < a,b | a136=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 136)(2 135)(3 134)(4 133)(5 132)(6 131)(7 130)(8 129)(9 128)(10 127)(11 126)(12 125)(13 124)(14 123)(15 122)(16 121)(17 120)(18 119)(19 118)(20 117)(21 116)(22 115)(23 114)(24 113)(25 112)(26 111)(27 110)(28 109)(29 108)(30 107)(31 106)(32 105)(33 104)(34 103)(35 102)(36 101)(37 100)(38 99)(39 98)(40 97)(41 96)(42 95)(43 94)(44 93)(45 92)(46 91)(47 90)(48 89)(49 88)(50 87)(51 86)(52 85)(53 84)(54 83)(55 82)(56 81)(57 80)(58 79)(59 78)(60 77)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 70)(68 69)
G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,136)(2,135)(3,134)(4,133)(5,132)(6,131)(7,130)(8,129)(9,128)(10,127)(11,126)(12,125)(13,124)(14,123)(15,122)(16,121)(17,120)(18,119)(19,118)(20,117)(21,116)(22,115)(23,114)(24,113)(25,112)(26,111)(27,110)(28,109)(29,108)(30,107)(31,106)(32,105)(33,104)(34,103)(35,102)(36,101)(37,100)(38,99)(39,98)(40,97)(41,96)(42,95)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,80)(58,79)(59,78)(60,77)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,136)(2,135)(3,134)(4,133)(5,132)(6,131)(7,130)(8,129)(9,128)(10,127)(11,126)(12,125)(13,124)(14,123)(15,122)(16,121)(17,120)(18,119)(19,118)(20,117)(21,116)(22,115)(23,114)(24,113)(25,112)(26,111)(27,110)(28,109)(29,108)(30,107)(31,106)(32,105)(33,104)(34,103)(35,102)(36,101)(37,100)(38,99)(39,98)(40,97)(41,96)(42,95)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,80)(58,79)(59,78)(60,77)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,136),(2,135),(3,134),(4,133),(5,132),(6,131),(7,130),(8,129),(9,128),(10,127),(11,126),(12,125),(13,124),(14,123),(15,122),(16,121),(17,120),(18,119),(19,118),(20,117),(21,116),(22,115),(23,114),(24,113),(25,112),(26,111),(27,110),(28,109),(29,108),(30,107),(31,106),(32,105),(33,104),(34,103),(35,102),(36,101),(37,100),(38,99),(39,98),(40,97),(41,96),(42,95),(43,94),(44,93),(45,92),(46,91),(47,90),(48,89),(49,88),(50,87),(51,86),(52,85),(53,84),(54,83),(55,82),(56,81),(57,80),(58,79),(59,78),(60,77),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,70),(68,69)]])
71 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 8A | 8B | 17A | ··· | 17H | 34A | ··· | 34H | 68A | ··· | 68P | 136A | ··· | 136AF |
order | 1 | 2 | 2 | 2 | 4 | 8 | 8 | 17 | ··· | 17 | 34 | ··· | 34 | 68 | ··· | 68 | 136 | ··· | 136 |
size | 1 | 1 | 68 | 68 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
71 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | D4 | D8 | D17 | D34 | D68 | D136 |
kernel | D136 | C136 | D68 | C34 | C17 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 8 | 8 | 16 | 32 |
Matrix representation of D136 ►in GL2(𝔽137) generated by
52 | 16 |
121 | 3 |
52 | 16 |
28 | 85 |
G:=sub<GL(2,GF(137))| [52,121,16,3],[52,28,16,85] >;
D136 in GAP, Magma, Sage, TeX
D_{136}
% in TeX
G:=Group("D136");
// GroupNames label
G:=SmallGroup(272,7);
// by ID
G=gap.SmallGroup(272,7);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-17,61,66,182,42,6404]);
// Polycyclic
G:=Group<a,b|a^136=b^2=1,b*a*b=a^-1>;
// generators/relations
Export