Extensions 1→N→G→Q→1 with N=C3×Dic11 and Q=C2

Direct product G=N×Q with N=C3×Dic11 and Q=C2
dρLabelID
C6×Dic11264C6xDic11264,16

Semidirect products G=N:Q with N=C3×Dic11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic11)⋊1C2 = S3×Dic11φ: C2/C1C2 ⊆ Out C3×Dic111324-(C3xDic11):1C2264,6
(C3×Dic11)⋊2C2 = D33⋊C4φ: C2/C1C2 ⊆ Out C3×Dic111324+(C3xDic11):2C2264,7
(C3×Dic11)⋊3C2 = C11⋊D12φ: C2/C1C2 ⊆ Out C3×Dic111324+(C3xDic11):3C2264,10
(C3×Dic11)⋊4C2 = C3×C11⋊D4φ: C2/C1C2 ⊆ Out C3×Dic111322(C3xDic11):4C2264,17
(C3×Dic11)⋊5C2 = C12×D11φ: trivial image1322(C3xDic11):5C2264,14

Non-split extensions G=N.Q with N=C3×Dic11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic11).1C2 = C33⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic112644-(C3xDic11).1C2264,11
(C3×Dic11).2C2 = C3×Dic22φ: C2/C1C2 ⊆ Out C3×Dic112642(C3xDic11).2C2264,13

׿
×
𝔽