Copied to
clipboard

G = C11⋊D12order 264 = 23·3·11

The semidirect product of C11 and D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C333D4, C112D12, D664C2, D62D11, Dic11⋊S3, C22.6D6, C6.6D22, C66.6C22, (S3×C22)⋊2C2, C31(C11⋊D4), C2.6(S3×D11), (C3×Dic11)⋊3C2, SmallGroup(264,10)

Series: Derived Chief Lower central Upper central

C1C66 — C11⋊D12
C1C11C33C66C3×Dic11 — C11⋊D12
C33C66 — C11⋊D12
C1C2

Generators and relations for C11⋊D12
 G = < a,b,c | a11=b12=c2=1, bab-1=cac=a-1, cbc=b-1 >

6C2
66C2
3C22
11C4
33C22
2S3
22S3
6D11
6C22
33D4
11C12
11D6
3D22
3C2×C22
2S3×C11
2D33
11D12
3C11⋊D4

Smallest permutation representation of C11⋊D12
On 132 points
Generators in S132
(1 35 76 124 102 114 62 55 42 24 94)(2 95 13 43 56 63 115 103 125 77 36)(3 25 78 126 104 116 64 57 44 14 96)(4 85 15 45 58 65 117 105 127 79 26)(5 27 80 128 106 118 66 59 46 16 86)(6 87 17 47 60 67 119 107 129 81 28)(7 29 82 130 108 120 68 49 48 18 88)(8 89 19 37 50 69 109 97 131 83 30)(9 31 84 132 98 110 70 51 38 20 90)(10 91 21 39 52 71 111 99 121 73 32)(11 33 74 122 100 112 72 53 40 22 92)(12 93 23 41 54 61 113 101 123 75 34)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)
(1 9)(2 8)(3 7)(4 6)(10 12)(13 83)(14 82)(15 81)(16 80)(17 79)(18 78)(19 77)(20 76)(21 75)(22 74)(23 73)(24 84)(25 88)(26 87)(27 86)(28 85)(29 96)(30 95)(31 94)(32 93)(33 92)(34 91)(35 90)(36 89)(37 125)(38 124)(39 123)(40 122)(41 121)(42 132)(43 131)(44 130)(45 129)(46 128)(47 127)(48 126)(49 104)(50 103)(51 102)(52 101)(53 100)(54 99)(55 98)(56 97)(57 108)(58 107)(59 106)(60 105)(61 111)(62 110)(63 109)(64 120)(65 119)(66 118)(67 117)(68 116)(69 115)(70 114)(71 113)(72 112)

G:=sub<Sym(132)| (1,35,76,124,102,114,62,55,42,24,94)(2,95,13,43,56,63,115,103,125,77,36)(3,25,78,126,104,116,64,57,44,14,96)(4,85,15,45,58,65,117,105,127,79,26)(5,27,80,128,106,118,66,59,46,16,86)(6,87,17,47,60,67,119,107,129,81,28)(7,29,82,130,108,120,68,49,48,18,88)(8,89,19,37,50,69,109,97,131,83,30)(9,31,84,132,98,110,70,51,38,20,90)(10,91,21,39,52,71,111,99,121,73,32)(11,33,74,122,100,112,72,53,40,22,92)(12,93,23,41,54,61,113,101,123,75,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132), (1,9)(2,8)(3,7)(4,6)(10,12)(13,83)(14,82)(15,81)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,74)(23,73)(24,84)(25,88)(26,87)(27,86)(28,85)(29,96)(30,95)(31,94)(32,93)(33,92)(34,91)(35,90)(36,89)(37,125)(38,124)(39,123)(40,122)(41,121)(42,132)(43,131)(44,130)(45,129)(46,128)(47,127)(48,126)(49,104)(50,103)(51,102)(52,101)(53,100)(54,99)(55,98)(56,97)(57,108)(58,107)(59,106)(60,105)(61,111)(62,110)(63,109)(64,120)(65,119)(66,118)(67,117)(68,116)(69,115)(70,114)(71,113)(72,112)>;

G:=Group( (1,35,76,124,102,114,62,55,42,24,94)(2,95,13,43,56,63,115,103,125,77,36)(3,25,78,126,104,116,64,57,44,14,96)(4,85,15,45,58,65,117,105,127,79,26)(5,27,80,128,106,118,66,59,46,16,86)(6,87,17,47,60,67,119,107,129,81,28)(7,29,82,130,108,120,68,49,48,18,88)(8,89,19,37,50,69,109,97,131,83,30)(9,31,84,132,98,110,70,51,38,20,90)(10,91,21,39,52,71,111,99,121,73,32)(11,33,74,122,100,112,72,53,40,22,92)(12,93,23,41,54,61,113,101,123,75,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132), (1,9)(2,8)(3,7)(4,6)(10,12)(13,83)(14,82)(15,81)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,74)(23,73)(24,84)(25,88)(26,87)(27,86)(28,85)(29,96)(30,95)(31,94)(32,93)(33,92)(34,91)(35,90)(36,89)(37,125)(38,124)(39,123)(40,122)(41,121)(42,132)(43,131)(44,130)(45,129)(46,128)(47,127)(48,126)(49,104)(50,103)(51,102)(52,101)(53,100)(54,99)(55,98)(56,97)(57,108)(58,107)(59,106)(60,105)(61,111)(62,110)(63,109)(64,120)(65,119)(66,118)(67,117)(68,116)(69,115)(70,114)(71,113)(72,112) );

G=PermutationGroup([[(1,35,76,124,102,114,62,55,42,24,94),(2,95,13,43,56,63,115,103,125,77,36),(3,25,78,126,104,116,64,57,44,14,96),(4,85,15,45,58,65,117,105,127,79,26),(5,27,80,128,106,118,66,59,46,16,86),(6,87,17,47,60,67,119,107,129,81,28),(7,29,82,130,108,120,68,49,48,18,88),(8,89,19,37,50,69,109,97,131,83,30),(9,31,84,132,98,110,70,51,38,20,90),(10,91,21,39,52,71,111,99,121,73,32),(11,33,74,122,100,112,72,53,40,22,92),(12,93,23,41,54,61,113,101,123,75,34)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132)], [(1,9),(2,8),(3,7),(4,6),(10,12),(13,83),(14,82),(15,81),(16,80),(17,79),(18,78),(19,77),(20,76),(21,75),(22,74),(23,73),(24,84),(25,88),(26,87),(27,86),(28,85),(29,96),(30,95),(31,94),(32,93),(33,92),(34,91),(35,90),(36,89),(37,125),(38,124),(39,123),(40,122),(41,121),(42,132),(43,131),(44,130),(45,129),(46,128),(47,127),(48,126),(49,104),(50,103),(51,102),(52,101),(53,100),(54,99),(55,98),(56,97),(57,108),(58,107),(59,106),(60,105),(61,111),(62,110),(63,109),(64,120),(65,119),(66,118),(67,117),(68,116),(69,115),(70,114),(71,113),(72,112)]])

39 conjugacy classes

class 1 2A2B2C 3  4  6 11A···11E12A12B22A···22E22F···22O33A···33E66A···66E
order122234611···11121222···2222···2233···3366···66
size1166622222···222222···26···64···44···4

39 irreducible representations

dim1111222222244
type++++++++++++
imageC1C2C2C2S3D4D6D11D12D22C11⋊D4S3×D11C11⋊D12
kernelC11⋊D12C3×Dic11S3×C22D66Dic11C33C22D6C11C6C3C2C1
# reps11111115251055

Matrix representation of C11⋊D12 in GL6(𝔽397)

100000
010000
000100
003969500
000010
000001
,
643530000
483330000
001000
009539600
0000396250
00003162
,
100000
393960000
001000
009539600
00002147
000081395

G:=sub<GL(6,GF(397))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,396,0,0,0,0,1,95,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[64,48,0,0,0,0,353,333,0,0,0,0,0,0,1,95,0,0,0,0,0,396,0,0,0,0,0,0,396,316,0,0,0,0,250,2],[1,39,0,0,0,0,0,396,0,0,0,0,0,0,1,95,0,0,0,0,0,396,0,0,0,0,0,0,2,81,0,0,0,0,147,395] >;

C11⋊D12 in GAP, Magma, Sage, TeX

C_{11}\rtimes D_{12}
% in TeX

G:=Group("C11:D12");
// GroupNames label

G:=SmallGroup(264,10);
// by ID

G=gap.SmallGroup(264,10);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-11,20,61,168,6004]);
// Polycyclic

G:=Group<a,b,c|a^11=b^12=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C11⋊D12 in TeX

׿
×
𝔽