Extensions 1→N→G→Q→1 with N=C34 and Q=C2xC4

Direct product G=NxQ with N=C34 and Q=C2xC4
dρLabelID
C22xC68272C2^2xC68272,46

Semidirect products G=N:Q with N=C34 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
C34:(C2xC4) = C22xC17:C4φ: C2xC4/C2C4 ⊆ Aut C3468C34:(C2xC4)272,52
C34:2(C2xC4) = C2xC4xD17φ: C2xC4/C4C2 ⊆ Aut C34136C34:2(C2xC4)272,37
C34:3(C2xC4) = C22xDic17φ: C2xC4/C22C2 ⊆ Aut C34272C34:3(C2xC4)272,44

Non-split extensions G=N.Q with N=C34 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
C34.1(C2xC4) = C68.C4φ: C2xC4/C2C4 ⊆ Aut C341364C34.1(C2xC4)272,29
C34.2(C2xC4) = D34.4C4φ: C2xC4/C2C4 ⊆ Aut C341364C34.2(C2xC4)272,30
C34.3(C2xC4) = C4xC17:C4φ: C2xC4/C2C4 ⊆ Aut C34684C34.3(C2xC4)272,31
C34.4(C2xC4) = C68:C4φ: C2xC4/C2C4 ⊆ Aut C34684C34.4(C2xC4)272,32
C34.5(C2xC4) = C2xC17:2C8φ: C2xC4/C2C4 ⊆ Aut C34272C34.5(C2xC4)272,33
C34.6(C2xC4) = C17:M4(2)φ: C2xC4/C2C4 ⊆ Aut C341364-C34.6(C2xC4)272,34
C34.7(C2xC4) = D17.D4φ: C2xC4/C2C4 ⊆ Aut C34684+C34.7(C2xC4)272,35
C34.8(C2xC4) = C8xD17φ: C2xC4/C4C2 ⊆ Aut C341362C34.8(C2xC4)272,4
C34.9(C2xC4) = C8:D17φ: C2xC4/C4C2 ⊆ Aut C341362C34.9(C2xC4)272,5
C34.10(C2xC4) = C4xDic17φ: C2xC4/C4C2 ⊆ Aut C34272C34.10(C2xC4)272,11
C34.11(C2xC4) = C34.D4φ: C2xC4/C4C2 ⊆ Aut C34272C34.11(C2xC4)272,12
C34.12(C2xC4) = D34:C4φ: C2xC4/C4C2 ⊆ Aut C34136C34.12(C2xC4)272,14
C34.13(C2xC4) = C2xC17:3C8φ: C2xC4/C22C2 ⊆ Aut C34272C34.13(C2xC4)272,9
C34.14(C2xC4) = C68.4C4φ: C2xC4/C22C2 ⊆ Aut C341362C34.14(C2xC4)272,10
C34.15(C2xC4) = C68:3C4φ: C2xC4/C22C2 ⊆ Aut C34272C34.15(C2xC4)272,13
C34.16(C2xC4) = C23.D17φ: C2xC4/C22C2 ⊆ Aut C34136C34.16(C2xC4)272,19
C34.17(C2xC4) = C22:C4xC17central extension (φ=1)136C34.17(C2xC4)272,21
C34.18(C2xC4) = C4:C4xC17central extension (φ=1)272C34.18(C2xC4)272,22
C34.19(C2xC4) = M4(2)xC17central extension (φ=1)1362C34.19(C2xC4)272,24

׿
x
:
Z
F
o
wr
Q
<