metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D34⋊1C4, C2.2D68, C34.6D4, C22.6D34, (C2×C68)⋊1C2, (C2×C4)⋊1D17, C2.5(C4×D17), C17⋊2(C22⋊C4), C34.12(C2×C4), (C2×Dic17)⋊1C2, C2.2(C17⋊D4), (C2×C34).6C22, (C22×D17).1C2, SmallGroup(272,14)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D34⋊C4
G = < a,b,c | a34=b2=c4=1, bab=a-1, ac=ca, cbc-1=a17b >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 36)(18 35)(19 68)(20 67)(21 66)(22 65)(23 64)(24 63)(25 62)(26 61)(27 60)(28 59)(29 58)(30 57)(31 56)(32 55)(33 54)(34 53)(69 124)(70 123)(71 122)(72 121)(73 120)(74 119)(75 118)(76 117)(77 116)(78 115)(79 114)(80 113)(81 112)(82 111)(83 110)(84 109)(85 108)(86 107)(87 106)(88 105)(89 104)(90 103)(91 136)(92 135)(93 134)(94 133)(95 132)(96 131)(97 130)(98 129)(99 128)(100 127)(101 126)(102 125)
(1 136 53 75)(2 103 54 76)(3 104 55 77)(4 105 56 78)(5 106 57 79)(6 107 58 80)(7 108 59 81)(8 109 60 82)(9 110 61 83)(10 111 62 84)(11 112 63 85)(12 113 64 86)(13 114 65 87)(14 115 66 88)(15 116 67 89)(16 117 68 90)(17 118 35 91)(18 119 36 92)(19 120 37 93)(20 121 38 94)(21 122 39 95)(22 123 40 96)(23 124 41 97)(24 125 42 98)(25 126 43 99)(26 127 44 100)(27 128 45 101)(28 129 46 102)(29 130 47 69)(30 131 48 70)(31 132 49 71)(32 133 50 72)(33 134 51 73)(34 135 52 74)
G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,68)(20,67)(21,66)(22,65)(23,64)(24,63)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54)(34,53)(69,124)(70,123)(71,122)(72,121)(73,120)(74,119)(75,118)(76,117)(77,116)(78,115)(79,114)(80,113)(81,112)(82,111)(83,110)(84,109)(85,108)(86,107)(87,106)(88,105)(89,104)(90,103)(91,136)(92,135)(93,134)(94,133)(95,132)(96,131)(97,130)(98,129)(99,128)(100,127)(101,126)(102,125), (1,136,53,75)(2,103,54,76)(3,104,55,77)(4,105,56,78)(5,106,57,79)(6,107,58,80)(7,108,59,81)(8,109,60,82)(9,110,61,83)(10,111,62,84)(11,112,63,85)(12,113,64,86)(13,114,65,87)(14,115,66,88)(15,116,67,89)(16,117,68,90)(17,118,35,91)(18,119,36,92)(19,120,37,93)(20,121,38,94)(21,122,39,95)(22,123,40,96)(23,124,41,97)(24,125,42,98)(25,126,43,99)(26,127,44,100)(27,128,45,101)(28,129,46,102)(29,130,47,69)(30,131,48,70)(31,132,49,71)(32,133,50,72)(33,134,51,73)(34,135,52,74)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,68)(20,67)(21,66)(22,65)(23,64)(24,63)(25,62)(26,61)(27,60)(28,59)(29,58)(30,57)(31,56)(32,55)(33,54)(34,53)(69,124)(70,123)(71,122)(72,121)(73,120)(74,119)(75,118)(76,117)(77,116)(78,115)(79,114)(80,113)(81,112)(82,111)(83,110)(84,109)(85,108)(86,107)(87,106)(88,105)(89,104)(90,103)(91,136)(92,135)(93,134)(94,133)(95,132)(96,131)(97,130)(98,129)(99,128)(100,127)(101,126)(102,125), (1,136,53,75)(2,103,54,76)(3,104,55,77)(4,105,56,78)(5,106,57,79)(6,107,58,80)(7,108,59,81)(8,109,60,82)(9,110,61,83)(10,111,62,84)(11,112,63,85)(12,113,64,86)(13,114,65,87)(14,115,66,88)(15,116,67,89)(16,117,68,90)(17,118,35,91)(18,119,36,92)(19,120,37,93)(20,121,38,94)(21,122,39,95)(22,123,40,96)(23,124,41,97)(24,125,42,98)(25,126,43,99)(26,127,44,100)(27,128,45,101)(28,129,46,102)(29,130,47,69)(30,131,48,70)(31,132,49,71)(32,133,50,72)(33,134,51,73)(34,135,52,74) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,36),(18,35),(19,68),(20,67),(21,66),(22,65),(23,64),(24,63),(25,62),(26,61),(27,60),(28,59),(29,58),(30,57),(31,56),(32,55),(33,54),(34,53),(69,124),(70,123),(71,122),(72,121),(73,120),(74,119),(75,118),(76,117),(77,116),(78,115),(79,114),(80,113),(81,112),(82,111),(83,110),(84,109),(85,108),(86,107),(87,106),(88,105),(89,104),(90,103),(91,136),(92,135),(93,134),(94,133),(95,132),(96,131),(97,130),(98,129),(99,128),(100,127),(101,126),(102,125)], [(1,136,53,75),(2,103,54,76),(3,104,55,77),(4,105,56,78),(5,106,57,79),(6,107,58,80),(7,108,59,81),(8,109,60,82),(9,110,61,83),(10,111,62,84),(11,112,63,85),(12,113,64,86),(13,114,65,87),(14,115,66,88),(15,116,67,89),(16,117,68,90),(17,118,35,91),(18,119,36,92),(19,120,37,93),(20,121,38,94),(21,122,39,95),(22,123,40,96),(23,124,41,97),(24,125,42,98),(25,126,43,99),(26,127,44,100),(27,128,45,101),(28,129,46,102),(29,130,47,69),(30,131,48,70),(31,132,49,71),(32,133,50,72),(33,134,51,73),(34,135,52,74)]])
74 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 17A | ··· | 17H | 34A | ··· | 34X | 68A | ··· | 68AF |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 17 | ··· | 17 | 34 | ··· | 34 | 68 | ··· | 68 |
| size | 1 | 1 | 1 | 1 | 34 | 34 | 2 | 2 | 34 | 34 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
74 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | |||
| image | C1 | C2 | C2 | C2 | C4 | D4 | D17 | D34 | C4×D17 | D68 | C17⋊D4 |
| kernel | D34⋊C4 | C2×Dic17 | C2×C68 | C22×D17 | D34 | C34 | C2×C4 | C22 | C2 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 4 | 2 | 8 | 8 | 16 | 16 | 16 |
Matrix representation of D34⋊C4 ►in GL3(𝔽137) generated by
| 1 | 0 | 0 |
| 0 | 116 | 116 |
| 0 | 21 | 34 |
| 1 | 0 | 0 |
| 0 | 116 | 116 |
| 0 | 34 | 21 |
| 100 | 0 | 0 |
| 0 | 129 | 101 |
| 0 | 36 | 8 |
G:=sub<GL(3,GF(137))| [1,0,0,0,116,21,0,116,34],[1,0,0,0,116,34,0,116,21],[100,0,0,0,129,36,0,101,8] >;
D34⋊C4 in GAP, Magma, Sage, TeX
D_{34}\rtimes C_4 % in TeX
G:=Group("D34:C4"); // GroupNames label
G:=SmallGroup(272,14);
// by ID
G=gap.SmallGroup(272,14);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-17,101,26,6404]);
// Polycyclic
G:=Group<a,b,c|a^34=b^2=c^4=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^17*b>;
// generators/relations
Export