Extensions 1→N→G→Q→1 with N=C70 and Q=C4

Direct product G=N×Q with N=C70 and Q=C4
dρLabelID
C2×C140280C2xC140280,29

Semidirect products G=N:Q with N=C70 and Q=C4
extensionφ:Q→Aut NdρLabelID
C701C4 = C2×C7⋊F5φ: C4/C1C4 ⊆ Aut C70704C70:1C4280,35
C702C4 = C14×F5φ: C4/C1C4 ⊆ Aut C70704C70:2C4280,34
C703C4 = C2×Dic35φ: C4/C2C2 ⊆ Aut C70280C70:3C4280,27
C704C4 = C10×Dic7φ: C4/C2C2 ⊆ Aut C70280C70:4C4280,17
C705C4 = C14×Dic5φ: C4/C2C2 ⊆ Aut C70280C70:5C4280,22

Non-split extensions G=N.Q with N=C70 and Q=C4
extensionφ:Q→Aut NdρLabelID
C70.1C4 = C35⋊C8φ: C4/C1C4 ⊆ Aut C702804C70.1C4280,6
C70.2C4 = C7×C5⋊C8φ: C4/C1C4 ⊆ Aut C702804C70.2C4280,5
C70.3C4 = C353C8φ: C4/C2C2 ⊆ Aut C702802C70.3C4280,3
C70.4C4 = C5×C7⋊C8φ: C4/C2C2 ⊆ Aut C702802C70.4C4280,2
C70.5C4 = C7×C52C8φ: C4/C2C2 ⊆ Aut C702802C70.5C4280,1

׿
×
𝔽