Copied to
clipboard

G = C2×C7⋊F5order 280 = 23·5·7

Direct product of C2 and C7⋊F5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C7⋊F5, C14⋊F5, C701C4, D5⋊Dic7, D10.D7, C10⋊Dic7, D5.2D14, C5⋊(C2×Dic7), C72(C2×F5), C352(C2×C4), (C7×D5)⋊2C4, (D5×C14).2C2, (C7×D5).2C22, SmallGroup(280,35)

Series: Derived Chief Lower central Upper central

C1C35 — C2×C7⋊F5
C1C7C35C7×D5C7⋊F5 — C2×C7⋊F5
C35 — C2×C7⋊F5
C1C2

Generators and relations for C2×C7⋊F5
 G = < a,b,c,d | a2=b7=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

5C2
5C2
5C22
35C4
35C4
5C14
5C14
35C2×C4
7F5
7F5
5Dic7
5C2×C14
5Dic7
7C2×F5
5C2×Dic7

Smallest permutation representation of C2×C7⋊F5
On 70 points
Generators in S70
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)
(1 29 22 15 8)(2 30 23 16 9)(3 31 24 17 10)(4 32 25 18 11)(5 33 26 19 12)(6 34 27 20 13)(7 35 28 21 14)(36 64 57 50 43)(37 65 58 51 44)(38 66 59 52 45)(39 67 60 53 46)(40 68 61 54 47)(41 69 62 55 48)(42 70 63 56 49)
(1 36)(2 42)(3 41)(4 40)(5 39)(6 38)(7 37)(8 50 29 57)(9 56 30 63)(10 55 31 62)(11 54 32 61)(12 53 33 60)(13 52 34 59)(14 51 35 58)(15 64 22 43)(16 70 23 49)(17 69 24 48)(18 68 25 47)(19 67 26 46)(20 66 27 45)(21 65 28 44)

G:=sub<Sym(70)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70), (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14)(36,64,57,50,43)(37,65,58,51,44)(38,66,59,52,45)(39,67,60,53,46)(40,68,61,54,47)(41,69,62,55,48)(42,70,63,56,49), (1,36)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,50,29,57)(9,56,30,63)(10,55,31,62)(11,54,32,61)(12,53,33,60)(13,52,34,59)(14,51,35,58)(15,64,22,43)(16,70,23,49)(17,69,24,48)(18,68,25,47)(19,67,26,46)(20,66,27,45)(21,65,28,44)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70), (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14)(36,64,57,50,43)(37,65,58,51,44)(38,66,59,52,45)(39,67,60,53,46)(40,68,61,54,47)(41,69,62,55,48)(42,70,63,56,49), (1,36)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,50,29,57)(9,56,30,63)(10,55,31,62)(11,54,32,61)(12,53,33,60)(13,52,34,59)(14,51,35,58)(15,64,22,43)(16,70,23,49)(17,69,24,48)(18,68,25,47)(19,67,26,46)(20,66,27,45)(21,65,28,44) );

G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70)], [(1,29,22,15,8),(2,30,23,16,9),(3,31,24,17,10),(4,32,25,18,11),(5,33,26,19,12),(6,34,27,20,13),(7,35,28,21,14),(36,64,57,50,43),(37,65,58,51,44),(38,66,59,52,45),(39,67,60,53,46),(40,68,61,54,47),(41,69,62,55,48),(42,70,63,56,49)], [(1,36),(2,42),(3,41),(4,40),(5,39),(6,38),(7,37),(8,50,29,57),(9,56,30,63),(10,55,31,62),(11,54,32,61),(12,53,33,60),(13,52,34,59),(14,51,35,58),(15,64,22,43),(16,70,23,49),(17,69,24,48),(18,68,25,47),(19,67,26,46),(20,66,27,45),(21,65,28,44)]])

34 conjugacy classes

class 1 2A2B2C4A4B4C4D 5 7A7B7C 10 14A14B14C14D···14I35A···35F70A···70F
order1222444457771014141414···1435···3570···70
size1155353535354222422210···104···44···4

34 irreducible representations

dim1111122224444
type++++-+-++
imageC1C2C2C4C4D7Dic7D14Dic7F5C2×F5C7⋊F5C2×C7⋊F5
kernelC2×C7⋊F5C7⋊F5D5×C14C7×D5C70D10D5D5C10C14C7C2C1
# reps1212233331166

Matrix representation of C2×C7⋊F5 in GL6(𝔽281)

28000000
02800000
001000
000100
000010
000001
,
2742800000
100000
004728000
001000
000047280
000010
,
100000
010000
000010
000001
00280014107
000280174266
,
5300000
1912280000
001000
004728000
00267174267174
0078147814

G:=sub<GL(6,GF(281))| [280,0,0,0,0,0,0,280,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[274,1,0,0,0,0,280,0,0,0,0,0,0,0,47,1,0,0,0,0,280,0,0,0,0,0,0,0,47,1,0,0,0,0,280,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,280,0,0,0,0,0,0,280,0,0,1,0,14,174,0,0,0,1,107,266],[53,191,0,0,0,0,0,228,0,0,0,0,0,0,1,47,267,78,0,0,0,280,174,14,0,0,0,0,267,78,0,0,0,0,174,14] >;

C2×C7⋊F5 in GAP, Magma, Sage, TeX

C_2\times C_7\rtimes F_5
% in TeX

G:=Group("C2xC7:F5");
// GroupNames label

G:=SmallGroup(280,35);
// by ID

G=gap.SmallGroup(280,35);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-7,20,483,173,6004]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^7=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C2×C7⋊F5 in TeX

׿
×
𝔽