Extensions 1→N→G→Q→1 with N=C2×C22 and Q=S3

Direct product G=N×Q with N=C2×C22 and Q=S3
dρLabelID
S3×C2×C22132S3xC2xC22264,37

Semidirect products G=N:Q with N=C2×C22 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C22)⋊1S3 = C11×S4φ: S3/C1S3 ⊆ Aut C2×C22443(C2xC22):1S3264,31
(C2×C22)⋊2S3 = C11⋊S4φ: S3/C1S3 ⊆ Aut C2×C22446+(C2xC22):2S3264,32
(C2×C22)⋊3S3 = C11×C3⋊D4φ: S3/C3C2 ⊆ Aut C2×C221322(C2xC22):3S3264,22
(C2×C22)⋊4S3 = C337D4φ: S3/C3C2 ⊆ Aut C2×C221322(C2xC22):4S3264,27
(C2×C22)⋊5S3 = C22×D33φ: S3/C3C2 ⊆ Aut C2×C22132(C2xC22):5S3264,38

Non-split extensions G=N.Q with N=C2×C22 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C22).S3 = C2×Dic33φ: S3/C3C2 ⊆ Aut C2×C22264(C2xC22).S3264,26
(C2×C22).2S3 = Dic3×C22central extension (φ=1)264(C2xC22).2S3264,21

׿
×
𝔽