Copied to
clipboard

G = C11⋊S4order 264 = 23·3·11

The semidirect product of C11 and S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C11⋊S4, A4⋊D11, C22⋊D33, (C2×C22)⋊2S3, (C11×A4)⋊1C2, SmallGroup(264,32)

Series: Derived Chief Lower central Upper central

C1C22C11×A4 — C11⋊S4
C1C22C2×C22C11×A4 — C11⋊S4
C11×A4 — C11⋊S4
C1

Generators and relations for C11⋊S4
 G = < a,b,c,d,e | a11=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >

3C2
66C2
4C3
33C22
33C4
44S3
3C22
6D11
4C33
33D4
3D22
3Dic11
4D33
11S4
3C11⋊D4

Character table of C11⋊S4

 class 12A2B3411A11B11C11D11E22A22B22C22D22E33A33B33C33D33E33F33G33H33I33J
 size 136686622222666668888888888
ρ11111111111111111111111111    trivial
ρ211-11-111111111111111111111    linear of order 2
ρ3220-102222222222-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ422020ζ117114ζ118113ζ111011ζ119112ζ116115ζ116115ζ111011ζ117114ζ119112ζ118113ζ116115ζ118113ζ111011ζ111011ζ118113ζ116115ζ117114ζ119112ζ119112ζ117114    orthogonal lifted from D11
ρ522020ζ116115ζ111011ζ117114ζ118113ζ119112ζ119112ζ117114ζ116115ζ118113ζ111011ζ119112ζ111011ζ117114ζ117114ζ111011ζ119112ζ116115ζ118113ζ118113ζ116115    orthogonal lifted from D11
ρ622020ζ119112ζ117114ζ116115ζ111011ζ118113ζ118113ζ116115ζ119112ζ111011ζ117114ζ118113ζ117114ζ116115ζ116115ζ117114ζ118113ζ119112ζ111011ζ111011ζ119112    orthogonal lifted from D11
ρ722020ζ111011ζ119112ζ118113ζ116115ζ117114ζ117114ζ118113ζ111011ζ116115ζ119112ζ117114ζ119112ζ118113ζ118113ζ119112ζ117114ζ111011ζ116115ζ116115ζ111011    orthogonal lifted from D11
ρ822020ζ118113ζ116115ζ119112ζ117114ζ111011ζ111011ζ119112ζ118113ζ117114ζ116115ζ111011ζ116115ζ119112ζ119112ζ116115ζ111011ζ118113ζ117114ζ117114ζ118113    orthogonal lifted from D11
ρ9220-10ζ111011ζ119112ζ118113ζ116115ζ117114ζ117114ζ118113ζ111011ζ116115ζ1191123ζ1173ζ114117ζ3ζ1193ζ112112ζ32ζ11832ζ113113ζ3ζ1183ζ113113ζ32ζ11932ζ112112ζ3ζ1173ζ114114ζ32ζ111032ζ1111ζ3ζ1163ζ1151153ζ1163ζ11511632ζ111032ζ111110    orthogonal lifted from D33
ρ10220-10ζ116115ζ111011ζ117114ζ118113ζ119112ζ119112ζ117114ζ116115ζ118113ζ111011ζ3ζ1193ζ112112ζ32ζ111032ζ11113ζ1173ζ114117ζ3ζ1173ζ11411432ζ111032ζ111110ζ32ζ11932ζ1121123ζ1163ζ115116ζ3ζ1183ζ113113ζ32ζ11832ζ113113ζ3ζ1163ζ115115    orthogonal lifted from D33
ρ11220-10ζ111011ζ119112ζ118113ζ116115ζ117114ζ117114ζ118113ζ111011ζ116115ζ119112ζ3ζ1173ζ114114ζ32ζ11932ζ112112ζ3ζ1183ζ113113ζ32ζ11832ζ113113ζ3ζ1193ζ1121123ζ1173ζ11411732ζ111032ζ1111103ζ1163ζ115116ζ3ζ1163ζ115115ζ32ζ111032ζ1111    orthogonal lifted from D33
ρ12220-10ζ118113ζ116115ζ119112ζ117114ζ111011ζ111011ζ119112ζ118113ζ117114ζ11611532ζ111032ζ111110ζ3ζ1163ζ115115ζ32ζ11932ζ112112ζ3ζ1193ζ1121123ζ1163ζ115116ζ32ζ111032ζ1111ζ3ζ1183ζ1131133ζ1173ζ114117ζ3ζ1173ζ114114ζ32ζ11832ζ113113    orthogonal lifted from D33
ρ13220-10ζ117114ζ118113ζ111011ζ119112ζ116115ζ116115ζ111011ζ117114ζ119112ζ1181133ζ1163ζ115116ζ32ζ11832ζ113113ζ32ζ111032ζ111132ζ111032ζ111110ζ3ζ1183ζ113113ζ3ζ1163ζ1151153ζ1173ζ114117ζ32ζ11932ζ112112ζ3ζ1193ζ112112ζ3ζ1173ζ114114    orthogonal lifted from D33
ρ14220-10ζ119112ζ117114ζ116115ζ111011ζ118113ζ118113ζ116115ζ119112ζ111011ζ117114ζ32ζ11832ζ1131133ζ1173ζ1141173ζ1163ζ115116ζ3ζ1163ζ115115ζ3ζ1173ζ114114ζ3ζ1183ζ113113ζ3ζ1193ζ11211232ζ111032ζ111110ζ32ζ111032ζ1111ζ32ζ11932ζ112112    orthogonal lifted from D33
ρ15220-10ζ118113ζ116115ζ119112ζ117114ζ111011ζ111011ζ119112ζ118113ζ117114ζ116115ζ32ζ111032ζ11113ζ1163ζ115116ζ3ζ1193ζ112112ζ32ζ11932ζ112112ζ3ζ1163ζ11511532ζ111032ζ111110ζ32ζ11832ζ113113ζ3ζ1173ζ1141143ζ1173ζ114117ζ3ζ1183ζ113113    orthogonal lifted from D33
ρ16220-10ζ117114ζ118113ζ111011ζ119112ζ116115ζ116115ζ111011ζ117114ζ119112ζ118113ζ3ζ1163ζ115115ζ3ζ1183ζ11311332ζ111032ζ111110ζ32ζ111032ζ1111ζ32ζ11832ζ1131133ζ1163ζ115116ζ3ζ1173ζ114114ζ3ζ1193ζ112112ζ32ζ11932ζ1121123ζ1173ζ114117    orthogonal lifted from D33
ρ17220-10ζ119112ζ117114ζ116115ζ111011ζ118113ζ118113ζ116115ζ119112ζ111011ζ117114ζ3ζ1183ζ113113ζ3ζ1173ζ114114ζ3ζ1163ζ1151153ζ1163ζ1151163ζ1173ζ114117ζ32ζ11832ζ113113ζ32ζ11932ζ112112ζ32ζ111032ζ111132ζ111032ζ111110ζ3ζ1193ζ112112    orthogonal lifted from D33
ρ18220-10ζ116115ζ111011ζ117114ζ118113ζ119112ζ119112ζ117114ζ116115ζ118113ζ111011ζ32ζ11932ζ11211232ζ111032ζ111110ζ3ζ1173ζ1141143ζ1173ζ114117ζ32ζ111032ζ1111ζ3ζ1193ζ112112ζ3ζ1163ζ115115ζ32ζ11832ζ113113ζ3ζ1183ζ1131133ζ1163ζ115116    orthogonal lifted from D33
ρ193-1-10133333-1-1-1-1-10000000000    orthogonal lifted from S4
ρ203-110-133333-1-1-1-1-10000000000    orthogonal lifted from S4
ρ216-2000118+3ζ113116+3ζ115119+3ζ112117+3ζ1141110+3ζ111110111191121181131171141161150000000000    orthogonal faithful
ρ226-20001110+3ζ11119+3ζ112118+3ζ113116+3ζ115117+3ζ1141171141181131110111161151191120000000000    orthogonal faithful
ρ236-2000117+3ζ114118+3ζ1131110+3ζ11119+3ζ112116+3ζ1151161151110111171141191121181130000000000    orthogonal faithful
ρ246-2000116+3ζ1151110+3ζ11117+3ζ114118+3ζ113119+3ζ1121191121171141161151181131110110000000000    orthogonal faithful
ρ256-2000119+3ζ112117+3ζ114116+3ζ1151110+3ζ11118+3ζ1131181131161151191121110111171140000000000    orthogonal faithful

Smallest permutation representation of C11⋊S4
On 44 points
Generators in S44
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 12)(11 13)(23 41)(24 42)(25 43)(26 44)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)(33 40)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 31)(13 32)(14 33)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)
(12 38 31)(13 39 32)(14 40 33)(15 41 23)(16 42 24)(17 43 25)(18 44 26)(19 34 27)(20 35 28)(21 36 29)(22 37 30)
(2 11)(3 10)(4 9)(5 8)(6 7)(12 24)(13 23)(14 33)(15 32)(16 31)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(34 35)(36 44)(37 43)(38 42)(39 41)

G:=sub<Sym(44)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,12)(11,13)(23,41)(24,42)(25,43)(26,44)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(33,40), (1,40)(2,41)(3,42)(4,43)(5,44)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,31)(13,32)(14,33)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30), (12,38,31)(13,39,32)(14,40,33)(15,41,23)(16,42,24)(17,43,25)(18,44,26)(19,34,27)(20,35,28)(21,36,29)(22,37,30), (2,11)(3,10)(4,9)(5,8)(6,7)(12,24)(13,23)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(34,35)(36,44)(37,43)(38,42)(39,41)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,12)(11,13)(23,41)(24,42)(25,43)(26,44)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(33,40), (1,40)(2,41)(3,42)(4,43)(5,44)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,31)(13,32)(14,33)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30), (12,38,31)(13,39,32)(14,40,33)(15,41,23)(16,42,24)(17,43,25)(18,44,26)(19,34,27)(20,35,28)(21,36,29)(22,37,30), (2,11)(3,10)(4,9)(5,8)(6,7)(12,24)(13,23)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(34,35)(36,44)(37,43)(38,42)(39,41) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,12),(11,13),(23,41),(24,42),(25,43),(26,44),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39),(33,40)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,31),(13,32),(14,33),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30)], [(12,38,31),(13,39,32),(14,40,33),(15,41,23),(16,42,24),(17,43,25),(18,44,26),(19,34,27),(20,35,28),(21,36,29),(22,37,30)], [(2,11),(3,10),(4,9),(5,8),(6,7),(12,24),(13,23),(14,33),(15,32),(16,31),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(34,35),(36,44),(37,43),(38,42),(39,41)]])

Matrix representation of C11⋊S4 in GL5(𝔽397)

267385000
12279000
00100
00010
00001
,
10000
01000
00011
0003960
00110
,
10000
01000
000396396
0039601
0000396
,
396396000
10000
003963960
00100
0039601
,
12130000
118385000
00010
00100
0000396

G:=sub<GL(5,GF(397))| [267,12,0,0,0,385,279,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,396,1,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,396,0,0,0,396,0,0,0,0,396,1,396],[396,1,0,0,0,396,0,0,0,0,0,0,396,1,396,0,0,396,0,0,0,0,0,0,1],[12,118,0,0,0,130,385,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,396] >;

C11⋊S4 in GAP, Magma, Sage, TeX

C_{11}\rtimes S_4
% in TeX

G:=Group("C11:S4");
// GroupNames label

G:=SmallGroup(264,32);
// by ID

G=gap.SmallGroup(264,32);
# by ID

G:=PCGroup([5,-2,-3,-11,-2,2,41,902,2643,1328,1654,2484]);
// Polycyclic

G:=Group<a,b,c,d,e|a^11=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C11⋊S4 in TeX
Character table of C11⋊S4 in TeX

׿
×
𝔽