non-abelian, soluble, monomial
Aliases: C11⋊S4, A4⋊D11, C22⋊D33, (C2×C22)⋊2S3, (C11×A4)⋊1C2, SmallGroup(264,32)
Series: Derived ►Chief ►Lower central ►Upper central
C11×A4 — C11⋊S4 |
Generators and relations for C11⋊S4
G = < a,b,c,d,e | a11=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >
Character table of C11⋊S4
class | 1 | 2A | 2B | 3 | 4 | 11A | 11B | 11C | 11D | 11E | 22A | 22B | 22C | 22D | 22E | 33A | 33B | 33C | 33D | 33E | 33F | 33G | 33H | 33I | 33J | |
size | 1 | 3 | 66 | 8 | 66 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | -1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 0 | 2 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ5 | 2 | 2 | 0 | 2 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ6 | 2 | 2 | 0 | 2 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ7 | 2 | 2 | 0 | 2 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ8 | 2 | 2 | 0 | 2 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ9 | 2 | 2 | 0 | -1 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | -ζ3ζ117+ζ3ζ114-ζ117 | ζ3ζ119-ζ3ζ112-ζ112 | ζ32ζ118-ζ32ζ113-ζ113 | ζ3ζ118-ζ3ζ113-ζ113 | ζ32ζ119-ζ32ζ112-ζ112 | ζ3ζ117-ζ3ζ114-ζ114 | ζ32ζ1110-ζ32ζ11-ζ11 | ζ3ζ116-ζ3ζ115-ζ115 | -ζ3ζ116+ζ3ζ115-ζ116 | -ζ32ζ1110+ζ32ζ11-ζ1110 | orthogonal lifted from D33 |
ρ10 | 2 | 2 | 0 | -1 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ3ζ119-ζ3ζ112-ζ112 | ζ32ζ1110-ζ32ζ11-ζ11 | -ζ3ζ117+ζ3ζ114-ζ117 | ζ3ζ117-ζ3ζ114-ζ114 | -ζ32ζ1110+ζ32ζ11-ζ1110 | ζ32ζ119-ζ32ζ112-ζ112 | -ζ3ζ116+ζ3ζ115-ζ116 | ζ3ζ118-ζ3ζ113-ζ113 | ζ32ζ118-ζ32ζ113-ζ113 | ζ3ζ116-ζ3ζ115-ζ115 | orthogonal lifted from D33 |
ρ11 | 2 | 2 | 0 | -1 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ3ζ117-ζ3ζ114-ζ114 | ζ32ζ119-ζ32ζ112-ζ112 | ζ3ζ118-ζ3ζ113-ζ113 | ζ32ζ118-ζ32ζ113-ζ113 | ζ3ζ119-ζ3ζ112-ζ112 | -ζ3ζ117+ζ3ζ114-ζ117 | -ζ32ζ1110+ζ32ζ11-ζ1110 | -ζ3ζ116+ζ3ζ115-ζ116 | ζ3ζ116-ζ3ζ115-ζ115 | ζ32ζ1110-ζ32ζ11-ζ11 | orthogonal lifted from D33 |
ρ12 | 2 | 2 | 0 | -1 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | -ζ32ζ1110+ζ32ζ11-ζ1110 | ζ3ζ116-ζ3ζ115-ζ115 | ζ32ζ119-ζ32ζ112-ζ112 | ζ3ζ119-ζ3ζ112-ζ112 | -ζ3ζ116+ζ3ζ115-ζ116 | ζ32ζ1110-ζ32ζ11-ζ11 | ζ3ζ118-ζ3ζ113-ζ113 | -ζ3ζ117+ζ3ζ114-ζ117 | ζ3ζ117-ζ3ζ114-ζ114 | ζ32ζ118-ζ32ζ113-ζ113 | orthogonal lifted from D33 |
ρ13 | 2 | 2 | 0 | -1 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | -ζ3ζ116+ζ3ζ115-ζ116 | ζ32ζ118-ζ32ζ113-ζ113 | ζ32ζ1110-ζ32ζ11-ζ11 | -ζ32ζ1110+ζ32ζ11-ζ1110 | ζ3ζ118-ζ3ζ113-ζ113 | ζ3ζ116-ζ3ζ115-ζ115 | -ζ3ζ117+ζ3ζ114-ζ117 | ζ32ζ119-ζ32ζ112-ζ112 | ζ3ζ119-ζ3ζ112-ζ112 | ζ3ζ117-ζ3ζ114-ζ114 | orthogonal lifted from D33 |
ρ14 | 2 | 2 | 0 | -1 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ32ζ118-ζ32ζ113-ζ113 | -ζ3ζ117+ζ3ζ114-ζ117 | -ζ3ζ116+ζ3ζ115-ζ116 | ζ3ζ116-ζ3ζ115-ζ115 | ζ3ζ117-ζ3ζ114-ζ114 | ζ3ζ118-ζ3ζ113-ζ113 | ζ3ζ119-ζ3ζ112-ζ112 | -ζ32ζ1110+ζ32ζ11-ζ1110 | ζ32ζ1110-ζ32ζ11-ζ11 | ζ32ζ119-ζ32ζ112-ζ112 | orthogonal lifted from D33 |
ρ15 | 2 | 2 | 0 | -1 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ32ζ1110-ζ32ζ11-ζ11 | -ζ3ζ116+ζ3ζ115-ζ116 | ζ3ζ119-ζ3ζ112-ζ112 | ζ32ζ119-ζ32ζ112-ζ112 | ζ3ζ116-ζ3ζ115-ζ115 | -ζ32ζ1110+ζ32ζ11-ζ1110 | ζ32ζ118-ζ32ζ113-ζ113 | ζ3ζ117-ζ3ζ114-ζ114 | -ζ3ζ117+ζ3ζ114-ζ117 | ζ3ζ118-ζ3ζ113-ζ113 | orthogonal lifted from D33 |
ρ16 | 2 | 2 | 0 | -1 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ3ζ116-ζ3ζ115-ζ115 | ζ3ζ118-ζ3ζ113-ζ113 | -ζ32ζ1110+ζ32ζ11-ζ1110 | ζ32ζ1110-ζ32ζ11-ζ11 | ζ32ζ118-ζ32ζ113-ζ113 | -ζ3ζ116+ζ3ζ115-ζ116 | ζ3ζ117-ζ3ζ114-ζ114 | ζ3ζ119-ζ3ζ112-ζ112 | ζ32ζ119-ζ32ζ112-ζ112 | -ζ3ζ117+ζ3ζ114-ζ117 | orthogonal lifted from D33 |
ρ17 | 2 | 2 | 0 | -1 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ3ζ118-ζ3ζ113-ζ113 | ζ3ζ117-ζ3ζ114-ζ114 | ζ3ζ116-ζ3ζ115-ζ115 | -ζ3ζ116+ζ3ζ115-ζ116 | -ζ3ζ117+ζ3ζ114-ζ117 | ζ32ζ118-ζ32ζ113-ζ113 | ζ32ζ119-ζ32ζ112-ζ112 | ζ32ζ1110-ζ32ζ11-ζ11 | -ζ32ζ1110+ζ32ζ11-ζ1110 | ζ3ζ119-ζ3ζ112-ζ112 | orthogonal lifted from D33 |
ρ18 | 2 | 2 | 0 | -1 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ32ζ119-ζ32ζ112-ζ112 | -ζ32ζ1110+ζ32ζ11-ζ1110 | ζ3ζ117-ζ3ζ114-ζ114 | -ζ3ζ117+ζ3ζ114-ζ117 | ζ32ζ1110-ζ32ζ11-ζ11 | ζ3ζ119-ζ3ζ112-ζ112 | ζ3ζ116-ζ3ζ115-ζ115 | ζ32ζ118-ζ32ζ113-ζ113 | ζ3ζ118-ζ3ζ113-ζ113 | -ζ3ζ116+ζ3ζ115-ζ116 | orthogonal lifted from D33 |
ρ19 | 3 | -1 | -1 | 0 | 1 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ20 | 3 | -1 | 1 | 0 | -1 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ21 | 6 | -2 | 0 | 0 | 0 | 3ζ118+3ζ113 | 3ζ116+3ζ115 | 3ζ119+3ζ112 | 3ζ117+3ζ114 | 3ζ1110+3ζ11 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 6 | -2 | 0 | 0 | 0 | 3ζ1110+3ζ11 | 3ζ119+3ζ112 | 3ζ118+3ζ113 | 3ζ116+3ζ115 | 3ζ117+3ζ114 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 6 | -2 | 0 | 0 | 0 | 3ζ117+3ζ114 | 3ζ118+3ζ113 | 3ζ1110+3ζ11 | 3ζ119+3ζ112 | 3ζ116+3ζ115 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | -2 | 0 | 0 | 0 | 3ζ116+3ζ115 | 3ζ1110+3ζ11 | 3ζ117+3ζ114 | 3ζ118+3ζ113 | 3ζ119+3ζ112 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | -2 | 0 | 0 | 0 | 3ζ119+3ζ112 | 3ζ117+3ζ114 | 3ζ116+3ζ115 | 3ζ1110+3ζ11 | 3ζ118+3ζ113 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 12)(11 13)(23 41)(24 42)(25 43)(26 44)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)(33 40)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 31)(13 32)(14 33)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)
(12 38 31)(13 39 32)(14 40 33)(15 41 23)(16 42 24)(17 43 25)(18 44 26)(19 34 27)(20 35 28)(21 36 29)(22 37 30)
(2 11)(3 10)(4 9)(5 8)(6 7)(12 24)(13 23)(14 33)(15 32)(16 31)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(34 35)(36 44)(37 43)(38 42)(39 41)
G:=sub<Sym(44)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,12)(11,13)(23,41)(24,42)(25,43)(26,44)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(33,40), (1,40)(2,41)(3,42)(4,43)(5,44)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,31)(13,32)(14,33)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30), (12,38,31)(13,39,32)(14,40,33)(15,41,23)(16,42,24)(17,43,25)(18,44,26)(19,34,27)(20,35,28)(21,36,29)(22,37,30), (2,11)(3,10)(4,9)(5,8)(6,7)(12,24)(13,23)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(34,35)(36,44)(37,43)(38,42)(39,41)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,12)(11,13)(23,41)(24,42)(25,43)(26,44)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(33,40), (1,40)(2,41)(3,42)(4,43)(5,44)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,31)(13,32)(14,33)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30), (12,38,31)(13,39,32)(14,40,33)(15,41,23)(16,42,24)(17,43,25)(18,44,26)(19,34,27)(20,35,28)(21,36,29)(22,37,30), (2,11)(3,10)(4,9)(5,8)(6,7)(12,24)(13,23)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(34,35)(36,44)(37,43)(38,42)(39,41) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,12),(11,13),(23,41),(24,42),(25,43),(26,44),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39),(33,40)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,31),(13,32),(14,33),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30)], [(12,38,31),(13,39,32),(14,40,33),(15,41,23),(16,42,24),(17,43,25),(18,44,26),(19,34,27),(20,35,28),(21,36,29),(22,37,30)], [(2,11),(3,10),(4,9),(5,8),(6,7),(12,24),(13,23),(14,33),(15,32),(16,31),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(34,35),(36,44),(37,43),(38,42),(39,41)]])
Matrix representation of C11⋊S4 ►in GL5(𝔽397)
267 | 385 | 0 | 0 | 0 |
12 | 279 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 396 | 0 |
0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 396 | 396 |
0 | 0 | 396 | 0 | 1 |
0 | 0 | 0 | 0 | 396 |
396 | 396 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 396 | 396 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 396 | 0 | 1 |
12 | 130 | 0 | 0 | 0 |
118 | 385 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 396 |
G:=sub<GL(5,GF(397))| [267,12,0,0,0,385,279,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,396,1,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,396,0,0,0,396,0,0,0,0,396,1,396],[396,1,0,0,0,396,0,0,0,0,0,0,396,1,396,0,0,396,0,0,0,0,0,0,1],[12,118,0,0,0,130,385,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,396] >;
C11⋊S4 in GAP, Magma, Sage, TeX
C_{11}\rtimes S_4
% in TeX
G:=Group("C11:S4");
// GroupNames label
G:=SmallGroup(264,32);
// by ID
G=gap.SmallGroup(264,32);
# by ID
G:=PCGroup([5,-2,-3,-11,-2,2,41,902,2643,1328,1654,2484]);
// Polycyclic
G:=Group<a,b,c,d,e|a^11=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of C11⋊S4 in TeX
Character table of C11⋊S4 in TeX