Copied to
clipboard

G = (C4×C12)⋊C6order 288 = 25·32

3rd semidirect product of C4×C12 and C6 acting faithfully

metabelian, soluble, monomial

Aliases: (C4×C12)⋊3C6, C4⋊D12⋊C3, C42⋊C33S3, C423(C3×S3), C3⋊(C23.A4), C22.1(S3×A4), (C22×S3).1A4, (C3×C42⋊C3)⋊3C2, (C2×C6).1(C2×A4), SmallGroup(288,405)

Series: Derived Chief Lower central Upper central

C1C4×C12 — (C4×C12)⋊C6
C1C22C2×C6C4×C12C3×C42⋊C3 — (C4×C12)⋊C6
C4×C12 — (C4×C12)⋊C6
C1

Generators and relations for (C4×C12)⋊C6
 G = < a,b,c | a4=b12=c6=1, ab=ba, cac-1=ab9, cbc-1=a-1b8 >

Subgroups: 498 in 59 conjugacy classes, 11 normal (all characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, C6, C2×C4, D4, C23, C32, C12, A4, D6, C2×C6, C42, C2×D4, C3×S3, D12, C2×C12, C2×A4, C22×S3, C22×S3, C41D4, C3×A4, C42⋊C3, C42⋊C3, C4×C12, C2×D12, S3×A4, C23.A4, C4⋊D12, C3×C42⋊C3, (C4×C12)⋊C6
Quotients: C1, C2, C3, S3, C6, A4, C3×S3, C2×A4, S3×A4, C23.A4, (C4×C12)⋊C6

Character table of (C4×C12)⋊C6

 class 12A2B2C3A3B3C3D3E4A4B6A6B6C12A12B12C12D
 size 13123621616323266648486666
ρ1111111111111111111    trivial
ρ211-1-111111111-1-11111    linear of order 2
ρ311-1-11ζ32ζ3ζ32ζ3111ζ65ζ61111    linear of order 6
ρ411-1-11ζ3ζ32ζ3ζ32111ζ6ζ651111    linear of order 6
ρ511111ζ32ζ3ζ32ζ3111ζ3ζ321111    linear of order 3
ρ611111ζ3ζ32ζ3ζ32111ζ32ζ31111    linear of order 3
ρ72200-122-1-122-100-1-1-1-1    orthogonal lifted from S3
ρ82200-1-1--3-1+-3ζ6ζ6522-100-1-1-1-1    complex lifted from C3×S3
ρ92200-1-1+-3-1--3ζ65ζ622-100-1-1-1-1    complex lifted from C3×S3
ρ1033-3130000-1-1300-1-1-1-1    orthogonal lifted from C2×A4
ρ11333-130000-1-1300-1-1-1-1    orthogonal lifted from A4
ρ126-20060000-22-200-222-2    orthogonal lifted from C23.A4
ρ136-200600002-2-2002-2-22    orthogonal lifted from C23.A4
ρ146600-30000-2-2-3001111    orthogonal lifted from S3×A4
ρ156-200-30000-221001-23-1-11+23    orthogonal faithful
ρ166-200-300002-2100-11+231-23-1    orthogonal faithful
ρ176-200-30000-221001+23-1-11-23    orthogonal faithful
ρ186-200-300002-2100-11-231+23-1    orthogonal faithful

Smallest permutation representation of (C4×C12)⋊C6
On 36 points
Generators in S36
(1 4 11 7)(2 5 12 8)(3 6 10 9)(13 16 19 22)(14 17 20 23)(15 18 21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 22 28 8 15 29)(2 18 32 7 19 25)(3 14 36 9 23 33)(4 13 31 12 24 26)(5 21 35 11 16 34)(6 17 27 10 20 30)

G:=sub<Sym(36)| (1,4,11,7)(2,5,12,8)(3,6,10,9)(13,16,19,22)(14,17,20,23)(15,18,21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,22,28,8,15,29)(2,18,32,7,19,25)(3,14,36,9,23,33)(4,13,31,12,24,26)(5,21,35,11,16,34)(6,17,27,10,20,30)>;

G:=Group( (1,4,11,7)(2,5,12,8)(3,6,10,9)(13,16,19,22)(14,17,20,23)(15,18,21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,22,28,8,15,29)(2,18,32,7,19,25)(3,14,36,9,23,33)(4,13,31,12,24,26)(5,21,35,11,16,34)(6,17,27,10,20,30) );

G=PermutationGroup([[(1,4,11,7),(2,5,12,8),(3,6,10,9),(13,16,19,22),(14,17,20,23),(15,18,21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,22,28,8,15,29),(2,18,32,7,19,25),(3,14,36,9,23,33),(4,13,31,12,24,26),(5,21,35,11,16,34),(6,17,27,10,20,30)]])

Matrix representation of (C4×C12)⋊C6 in GL6(𝔽13)

100000
010000
1129100
769400
40102107
110263
,
630000
1030000
4911100
9981100
31279710
81229310
,
3830612
490067
1070000
11060010
2077510
5011359

G:=sub<GL(6,GF(13))| [1,0,11,7,4,1,0,1,2,6,0,1,0,0,9,9,10,0,0,0,1,4,2,2,0,0,0,0,10,6,0,0,0,0,7,3],[6,10,4,9,3,8,3,3,9,9,12,12,0,0,1,8,7,2,0,0,11,11,9,9,0,0,0,0,7,3,0,0,0,0,10,10],[3,4,10,11,2,5,8,9,7,0,0,0,3,0,0,6,7,11,0,0,0,0,7,3,6,6,0,0,5,5,12,7,0,10,10,9] >;

(C4×C12)⋊C6 in GAP, Magma, Sage, TeX

(C_4\times C_{12})\rtimes C_6
% in TeX

G:=Group("(C4xC12):C6");
// GroupNames label

G:=SmallGroup(288,405);
// by ID

G=gap.SmallGroup(288,405);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-3,-2,2,4664,198,772,4371,2110,360,1684,3036,5305]);
// Polycyclic

G:=Group<a,b,c|a^4=b^12=c^6=1,a*b=b*a,c*a*c^-1=a*b^9,c*b*c^-1=a^-1*b^8>;
// generators/relations

Export

Character table of (C4×C12)⋊C6 in TeX

׿
×
𝔽