Extensions 1→N→G→Q→1 with N=C4xC12 and Q=C6

Direct product G=NxQ with N=C4xC12 and Q=C6
dρLabelID
C2xC122288C2xC12^2288,811

Semidirect products G=N:Q with N=C4xC12 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C4xC12):1C6 = C42:C3:S3φ: C6/C1C6 ⊆ Aut C4xC12486(C4xC12):1C6288,406
(C4xC12):2C6 = C3xC42:C6φ: C6/C1C6 ⊆ Aut C4xC12486(C4xC12):2C6288,635
(C4xC12):3C6 = (C4xC12):C6φ: C6/C1C6 ⊆ Aut C4xC12366+(C4xC12):3C6288,405
(C4xC12):4C6 = S3xC42:C3φ: C6/C1C6 ⊆ Aut C4xC12366(C4xC12):4C6288,407
(C4xC12):5C6 = C3xC23.A4φ: C6/C1C6 ⊆ Aut C4xC12366(C4xC12):5C6288,636
(C4xC12):6C6 = C6xC42:C3φ: C6/C2C3 ⊆ Aut C4xC12363(C4xC12):6C6288,632
(C4xC12):7C6 = C3xC42:3S3φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12):7C6288,647
(C4xC12):8C6 = C32xC42:C2φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12):8C6288,814
(C4xC12):9C6 = C32xC42:2C2φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12):9C6288,823
(C4xC12):10C6 = C3xC4:D12φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12):10C6288,645
(C4xC12):11C6 = C3xC42:7S3φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12):11C6288,646
(C4xC12):12C6 = C3xC42:4S3φ: C6/C3C2 ⊆ Aut C4xC12242(C4xC12):12C6288,239
(C4xC12):13C6 = C12xD12φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12):13C6288,644
(C4xC12):14C6 = S3xC4xC12φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12):14C6288,642
(C4xC12):15C6 = C3xC42:2S3φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12):15C6288,643
(C4xC12):16C6 = C32xC4wrC2φ: C6/C3C2 ⊆ Aut C4xC1272(C4xC12):16C6288,322
(C4xC12):17C6 = D4xC3xC12φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12):17C6288,815
(C4xC12):18C6 = C32xC4.4D4φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12):18C6288,821
(C4xC12):19C6 = C32xC4:1D4φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12):19C6288,824

Non-split extensions G=N.Q with N=C4xC12 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C4xC12).1C6 = C42:C18φ: C6/C1C6 ⊆ Aut C4xC12726(C4xC12).1C6288,74
(C4xC12).2C6 = C42:2C18φ: C6/C1C6 ⊆ Aut C4xC12366(C4xC12).2C6288,75
(C4xC12).3C6 = C2xC42:C9φ: C6/C2C3 ⊆ Aut C4xC12363(C4xC12).3C6288,71
(C4xC12).4C6 = C9xC8:C4φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).4C6288,47
(C4xC12).5C6 = C9xC42:C2φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12).5C6288,167
(C4xC12).6C6 = C9xC42:2C2φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12).6C6288,176
(C4xC12).7C6 = C32xC8:C4φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).7C6288,315
(C4xC12).8C6 = C3xC12:2Q8φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12).8C6288,640
(C4xC12).9C6 = C3xC12.6Q8φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12).9C6288,641
(C4xC12).10C6 = C3xC12:C8φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12).10C6288,238
(C4xC12).11C6 = C12xDic6φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12).11C6288,639
(C4xC12).12C6 = C12xC3:C8φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12).12C6288,236
(C4xC12).13C6 = C3xC42.S3φ: C6/C3C2 ⊆ Aut C4xC1296(C4xC12).13C6288,237
(C4xC12).14C6 = C9xC4wrC2φ: C6/C3C2 ⊆ Aut C4xC12722(C4xC12).14C6288,54
(C4xC12).15C6 = C9xC4:C8φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).15C6288,55
(C4xC12).16C6 = D4xC36φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12).16C6288,168
(C4xC12).17C6 = Q8xC36φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).17C6288,169
(C4xC12).18C6 = C9xC4.4D4φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12).18C6288,174
(C4xC12).19C6 = C9xC42.C2φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).19C6288,175
(C4xC12).20C6 = C9xC4:1D4φ: C6/C3C2 ⊆ Aut C4xC12144(C4xC12).20C6288,177
(C4xC12).21C6 = C9xC4:Q8φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).21C6288,178
(C4xC12).22C6 = C32xC4:C8φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).22C6288,323
(C4xC12).23C6 = Q8xC3xC12φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).23C6288,816
(C4xC12).24C6 = C32xC42.C2φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).24C6288,822
(C4xC12).25C6 = C32xC4:Q8φ: C6/C3C2 ⊆ Aut C4xC12288(C4xC12).25C6288,825

׿
x
:
Z
F
o
wr
Q
<