metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D36⋊5C4, Dic9⋊5D4, C9⋊3(C4×D4), C4⋊C4⋊8D9, C4⋊1(C4×D9), C36⋊2(C2×C4), C2.4(D4×D9), D18⋊3(C2×C4), C6.85(S3×D4), D18⋊C4⋊12C2, C12.10(C4×S3), (C4×Dic9)⋊3C2, (C2×D36).7C2, C18.24(C2×D4), (C2×C4).32D18, C3.(Dic3⋊5D4), (C2×C12).182D6, C18.33(C4○D4), (C2×C36).57C22, (C2×C18).34C23, C18.11(C22×C4), C2.2(Q8⋊3D9), C6.39(Q8⋊3S3), C22.18(C22×D9), (C2×Dic9).33C22, (C22×D9).19C22, (C9×C4⋊C4)⋊4C2, (C2×C4×D9)⋊12C2, C6.50(S3×C2×C4), C2.13(C2×C4×D9), (C3×C4⋊C4).11S3, (C2×C6).191(C22×S3), SmallGroup(288,103)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D36⋊C4
G = < a,b,c | a36=b2=c4=1, bab=a-1, cac-1=a19, cbc-1=a18b >
Subgroups: 656 in 141 conjugacy classes, 54 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, C23, C9, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, D9, C18, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C4×D4, Dic9, Dic9, C36, C36, D18, D18, C2×C18, C4×Dic3, D6⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C4×D9, D36, C2×Dic9, C2×C36, C2×C36, C22×D9, Dic3⋊5D4, C4×Dic9, D18⋊C4, C9×C4⋊C4, C2×C4×D9, C2×D36, D36⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, D9, C4×S3, C22×S3, C4×D4, D18, S3×C2×C4, S3×D4, Q8⋊3S3, C4×D9, C22×D9, Dic3⋊5D4, C2×C4×D9, D4×D9, Q8⋊3D9, D36⋊C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 18)(11 17)(12 16)(13 15)(28 36)(29 35)(30 34)(31 33)(37 43)(38 42)(39 41)(44 72)(45 71)(46 70)(47 69)(48 68)(49 67)(50 66)(51 65)(52 64)(53 63)(54 62)(55 61)(56 60)(57 59)(73 85)(74 84)(75 83)(76 82)(77 81)(78 80)(86 108)(87 107)(88 106)(89 105)(90 104)(91 103)(92 102)(93 101)(94 100)(95 99)(96 98)(109 129)(110 128)(111 127)(112 126)(113 125)(114 124)(115 123)(116 122)(117 121)(118 120)(130 144)(131 143)(132 142)(133 141)(134 140)(135 139)(136 138)
(1 115 102 72)(2 134 103 55)(3 117 104 38)(4 136 105 57)(5 119 106 40)(6 138 107 59)(7 121 108 42)(8 140 73 61)(9 123 74 44)(10 142 75 63)(11 125 76 46)(12 144 77 65)(13 127 78 48)(14 110 79 67)(15 129 80 50)(16 112 81 69)(17 131 82 52)(18 114 83 71)(19 133 84 54)(20 116 85 37)(21 135 86 56)(22 118 87 39)(23 137 88 58)(24 120 89 41)(25 139 90 60)(26 122 91 43)(27 141 92 62)(28 124 93 45)(29 143 94 64)(30 126 95 47)(31 109 96 66)(32 128 97 49)(33 111 98 68)(34 130 99 51)(35 113 100 70)(36 132 101 53)
G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,43)(38,42)(39,41)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(73,85)(74,84)(75,83)(76,82)(77,81)(78,80)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,100)(95,99)(96,98)(109,129)(110,128)(111,127)(112,126)(113,125)(114,124)(115,123)(116,122)(117,121)(118,120)(130,144)(131,143)(132,142)(133,141)(134,140)(135,139)(136,138), (1,115,102,72)(2,134,103,55)(3,117,104,38)(4,136,105,57)(5,119,106,40)(6,138,107,59)(7,121,108,42)(8,140,73,61)(9,123,74,44)(10,142,75,63)(11,125,76,46)(12,144,77,65)(13,127,78,48)(14,110,79,67)(15,129,80,50)(16,112,81,69)(17,131,82,52)(18,114,83,71)(19,133,84,54)(20,116,85,37)(21,135,86,56)(22,118,87,39)(23,137,88,58)(24,120,89,41)(25,139,90,60)(26,122,91,43)(27,141,92,62)(28,124,93,45)(29,143,94,64)(30,126,95,47)(31,109,96,66)(32,128,97,49)(33,111,98,68)(34,130,99,51)(35,113,100,70)(36,132,101,53)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,43)(38,42)(39,41)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(73,85)(74,84)(75,83)(76,82)(77,81)(78,80)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,100)(95,99)(96,98)(109,129)(110,128)(111,127)(112,126)(113,125)(114,124)(115,123)(116,122)(117,121)(118,120)(130,144)(131,143)(132,142)(133,141)(134,140)(135,139)(136,138), (1,115,102,72)(2,134,103,55)(3,117,104,38)(4,136,105,57)(5,119,106,40)(6,138,107,59)(7,121,108,42)(8,140,73,61)(9,123,74,44)(10,142,75,63)(11,125,76,46)(12,144,77,65)(13,127,78,48)(14,110,79,67)(15,129,80,50)(16,112,81,69)(17,131,82,52)(18,114,83,71)(19,133,84,54)(20,116,85,37)(21,135,86,56)(22,118,87,39)(23,137,88,58)(24,120,89,41)(25,139,90,60)(26,122,91,43)(27,141,92,62)(28,124,93,45)(29,143,94,64)(30,126,95,47)(31,109,96,66)(32,128,97,49)(33,111,98,68)(34,130,99,51)(35,113,100,70)(36,132,101,53) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,18),(11,17),(12,16),(13,15),(28,36),(29,35),(30,34),(31,33),(37,43),(38,42),(39,41),(44,72),(45,71),(46,70),(47,69),(48,68),(49,67),(50,66),(51,65),(52,64),(53,63),(54,62),(55,61),(56,60),(57,59),(73,85),(74,84),(75,83),(76,82),(77,81),(78,80),(86,108),(87,107),(88,106),(89,105),(90,104),(91,103),(92,102),(93,101),(94,100),(95,99),(96,98),(109,129),(110,128),(111,127),(112,126),(113,125),(114,124),(115,123),(116,122),(117,121),(118,120),(130,144),(131,143),(132,142),(133,141),(134,140),(135,139),(136,138)], [(1,115,102,72),(2,134,103,55),(3,117,104,38),(4,136,105,57),(5,119,106,40),(6,138,107,59),(7,121,108,42),(8,140,73,61),(9,123,74,44),(10,142,75,63),(11,125,76,46),(12,144,77,65),(13,127,78,48),(14,110,79,67),(15,129,80,50),(16,112,81,69),(17,131,82,52),(18,114,83,71),(19,133,84,54),(20,116,85,37),(21,135,86,56),(22,118,87,39),(23,137,88,58),(24,120,89,41),(25,139,90,60),(26,122,91,43),(27,141,92,62),(28,124,93,45),(29,143,94,64),(30,126,95,47),(31,109,96,66),(32,128,97,49),(33,111,98,68),(34,130,99,51),(35,113,100,70),(36,132,101,53)]])
60 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 6A | 6B | 6C | 9A | 9B | 9C | 12A | ··· | 12F | 18A | ··· | 18I | 36A | ··· | 36R |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 9 | 9 | 9 | 12 | ··· | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
| size | 1 | 1 | 1 | 1 | 18 | 18 | 18 | 18 | 2 | 2 | ··· | 2 | 9 | 9 | 9 | 9 | 18 | 18 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
60 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | D4 | D6 | C4○D4 | D9 | C4×S3 | D18 | C4×D9 | S3×D4 | Q8⋊3S3 | D4×D9 | Q8⋊3D9 |
| kernel | D36⋊C4 | C4×Dic9 | D18⋊C4 | C9×C4⋊C4 | C2×C4×D9 | C2×D36 | D36 | C3×C4⋊C4 | Dic9 | C2×C12 | C18 | C4⋊C4 | C12 | C2×C4 | C4 | C6 | C6 | C2 | C2 |
| # reps | 1 | 1 | 2 | 1 | 2 | 1 | 8 | 1 | 2 | 3 | 2 | 3 | 4 | 9 | 12 | 1 | 1 | 3 | 3 |
Matrix representation of D36⋊C4 ►in GL4(𝔽37) generated by
| 31 | 11 | 0 | 0 |
| 26 | 20 | 0 | 0 |
| 0 | 0 | 36 | 2 |
| 0 | 0 | 36 | 1 |
| 1 | 1 | 0 | 0 |
| 0 | 36 | 0 | 0 |
| 0 | 0 | 36 | 0 |
| 0 | 0 | 36 | 1 |
| 6 | 0 | 0 | 0 |
| 0 | 6 | 0 | 0 |
| 0 | 0 | 1 | 35 |
| 0 | 0 | 0 | 36 |
G:=sub<GL(4,GF(37))| [31,26,0,0,11,20,0,0,0,0,36,36,0,0,2,1],[1,0,0,0,1,36,0,0,0,0,36,36,0,0,0,1],[6,0,0,0,0,6,0,0,0,0,1,0,0,0,35,36] >;
D36⋊C4 in GAP, Magma, Sage, TeX
D_{36}\rtimes C_4 % in TeX
G:=Group("D36:C4"); // GroupNames label
G:=SmallGroup(288,103);
// by ID
G=gap.SmallGroup(288,103);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,219,58,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c|a^36=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^19,c*b*c^-1=a^18*b>;
// generators/relations