Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C3.S4

Direct product G=N×Q with N=C2 and Q=C2×C3.S4
dρLabelID
C22×C3.S436C2^2xC3.S4288,835


Non-split extensions G=N.Q with N=C2 and Q=C2×C3.S4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C3.S4) = C4×C3.S4central extension (φ=1)366C2.1(C2xC3.S4)288,333
C2.2(C2×C3.S4) = C2×C6.S4central extension (φ=1)72C2.2(C2xC3.S4)288,341
C2.3(C2×C3.S4) = C12.1S4central stem extension (φ=1)726-C2.3(C2xC3.S4)288,332
C2.4(C2×C3.S4) = C22⋊D36central stem extension (φ=1)366+C2.4(C2xC3.S4)288,334
C2.5(C2×C3.S4) = C2×Q8.D9central stem extension (φ=1)288C2.5(C2xC3.S4)288,335
C2.6(C2×C3.S4) = C2×Q8⋊D9central stem extension (φ=1)144C2.6(C2xC3.S4)288,336
C2.7(C2×C3.S4) = Q8.D18central stem extension (φ=1)1444C2.7(C2xC3.S4)288,337
C2.8(C2×C3.S4) = C12.3S4central stem extension (φ=1)1444-C2.8(C2xC3.S4)288,338
C2.9(C2×C3.S4) = C12.11S4central stem extension (φ=1)1444C2.9(C2xC3.S4)288,339
C2.10(C2×C3.S4) = C12.4S4central stem extension (φ=1)724+C2.10(C2xC3.S4)288,340
C2.11(C2×C3.S4) = C23.D18central stem extension (φ=1)366C2.11(C2xC3.S4)288,342

׿
×
𝔽