Copied to
clipboard

G = C12.1S4order 288 = 25·32

1st non-split extension by C12 of S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: C12.1S4, C22⋊Dic18, C23.1D18, C3.A4⋊Q8, C3.(A4⋊Q8), (C2×C6).Dic6, C6.16(C2×S4), C6.S4.C2, C4.1(C3.S4), (C22×C4).2D9, (C22×C12).2S3, (C22×C6).13D6, C2.3(C2×C3.S4), (C4×C3.A4).1C2, (C2×C3.A4).1C22, SmallGroup(288,332)

Series: Derived Chief Lower central Upper central

C1C22C2×C3.A4 — C12.1S4
C1C22C2×C6C3.A4C2×C3.A4C6.S4 — C12.1S4
C3.A4C2×C3.A4 — C12.1S4
C1C2C4

Generators and relations for C12.1S4
 G = < a,b,c,d,e | a12=b2=c2=1, d3=a4, e2=a6, ab=ba, ac=ca, ad=da, eae-1=a-1, dbd-1=ebe-1=bc=cb, dcd-1=b, ce=ec, ede-1=a8d2 >

Subgroups: 360 in 72 conjugacy classes, 18 normal (16 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C2×C4, Q8, C23, C9, Dic3, C12, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C18, Dic6, C2×Dic3, C2×C12, C22×C6, C22⋊Q8, Dic9, C36, C3.A4, Dic3⋊C4, C4⋊Dic3, C6.D4, C2×Dic6, C22×C12, Dic18, C2×C3.A4, C12.48D4, C6.S4, C4×C3.A4, C12.1S4
Quotients: C1, C2, C22, S3, Q8, D6, D9, Dic6, S4, D18, C2×S4, Dic18, C3.S4, A4⋊Q8, C2×C3.S4, C12.1S4

Character table of C12.1S4

 class 12A2B2C34A4B4C4D4E4F6A6B6C9A9B9C12A12B12C12D18A18B18C36A36B36C36D36E36F
 size 1133226363636362668882266888888888
ρ1111111111111111111111111111111    trivial
ρ211111-1-11-1-11111111-1-1-1-1111-1-1-1-1-1-1    linear of order 2
ρ31111111-1-1-1-11111111111111111111    linear of order 2
ρ411111-1-1-111-1111111-1-1-1-1111-1-1-1-1-1-1    linear of order 2
ρ522222220000222-1-1-12222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ62222-1220000-1-1-1ζ989ζ9792ζ9594-1-1-1-1ζ9792ζ989ζ9594ζ9594ζ9792ζ9594ζ989ζ9792ζ989    orthogonal lifted from D9
ρ722222-2-20000222-1-1-1-2-2-2-2-1-1-1111111    orthogonal lifted from D6
ρ82222-1-2-20000-1-1-1ζ9594ζ989ζ97921111ζ989ζ9594ζ97929792989979295949899594    orthogonal lifted from D18
ρ92222-1-2-20000-1-1-1ζ989ζ9792ζ95941111ζ9792ζ989ζ95949594979295949899792989    orthogonal lifted from D18
ρ102222-1-2-20000-1-1-1ζ9792ζ9594ζ9891111ζ9594ζ9792ζ9899899594989979295949792    orthogonal lifted from D18
ρ112222-1220000-1-1-1ζ9594ζ989ζ9792-1-1-1-1ζ989ζ9594ζ9792ζ9792ζ989ζ9792ζ9594ζ989ζ9594    orthogonal lifted from D9
ρ122222-1220000-1-1-1ζ9792ζ9594ζ989-1-1-1-1ζ9594ζ9792ζ989ζ989ζ9594ζ989ζ9792ζ9594ζ9792    orthogonal lifted from D9
ρ132-22-22000000-22-22220000-2-2-2000000    symplectic lifted from Q8, Schur index 2
ρ142-22-22000000-22-2-1-1-1000011133-3-3-33    symplectic lifted from Dic6, Schur index 2
ρ152-22-22000000-22-2-1-1-10000111-3-3333-3    symplectic lifted from Dic6, Schur index 2
ρ162-22-2-10000001-11ζ9792ζ9594ζ989-33-339594979298943ζ9843ζ9ζ4ζ954ζ94ζ43ζ9843ζ9ζ4ζ974ζ924ζ954ζ944ζ974ζ92    symplectic lifted from Dic18, Schur index 2
ρ172-22-2-10000001-11ζ9792ζ9594ζ9893-33-395949792989ζ43ζ9843ζ94ζ954ζ9443ζ9843ζ94ζ974ζ92ζ4ζ954ζ94ζ4ζ974ζ92    symplectic lifted from Dic18, Schur index 2
ρ182-22-2-10000001-11ζ9594ζ989ζ9792-33-33989959497924ζ974ζ9243ζ9843ζ9ζ4ζ974ζ924ζ954ζ94ζ43ζ9843ζ9ζ4ζ954ζ94    symplectic lifted from Dic18, Schur index 2
ρ192-22-2-10000001-11ζ9594ζ989ζ97923-33-398995949792ζ4ζ974ζ92ζ43ζ9843ζ94ζ974ζ92ζ4ζ954ζ9443ζ9843ζ94ζ954ζ94    symplectic lifted from Dic18, Schur index 2
ρ202-22-2-10000001-11ζ989ζ9792ζ95943-33-3979298995944ζ954ζ94ζ4ζ974ζ92ζ4ζ954ζ9443ζ9843ζ94ζ974ζ92ζ43ζ9843ζ9    symplectic lifted from Dic18, Schur index 2
ρ212-22-2-10000001-11ζ989ζ9792ζ9594-33-3397929899594ζ4ζ954ζ944ζ974ζ924ζ954ζ94ζ43ζ9843ζ9ζ4ζ974ζ9243ζ9843ζ9    symplectic lifted from Dic18, Schur index 2
ρ2233-1-133-11-11-13-1-100033-1-1000000000    orthogonal lifted from S4
ρ2333-1-13-31-1-1113-1-1000-3-311000000000    orthogonal lifted from C2×S4
ρ2433-1-133-1-11-113-1-100033-1-1000000000    orthogonal lifted from S4
ρ2533-1-13-3111-1-13-1-1000-3-311000000000    orthogonal lifted from C2×S4
ρ2666-2-2-36-20000-311000-3-311000000000    orthogonal lifted from C3.S4
ρ2766-2-2-3-620000-31100033-1-1000000000    orthogonal lifted from C2×C3.S4
ρ286-6-226000000-6-220000000000000000    symplectic lifted from A4⋊Q8, Schur index 2
ρ296-6-22-300000031-100033-33-33000000000    symplectic faithful, Schur index 2
ρ306-6-22-300000031-1000-33333-3000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C12.1S4
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 25)(11 26)(12 27)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)(49 64)(50 65)(51 66)(52 67)(53 68)(54 69)(55 70)(56 71)(57 72)(58 61)(59 62)(60 63)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 46)(14 47)(15 48)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(49 70)(50 71)(51 72)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)
(1 55 48 5 59 40 9 51 44)(2 56 37 6 60 41 10 52 45)(3 57 38 7 49 42 11 53 46)(4 58 39 8 50 43 12 54 47)(13 36 72 17 28 64 21 32 68)(14 25 61 18 29 65 22 33 69)(15 26 62 19 30 66 23 34 70)(16 27 63 20 31 67 24 35 71)
(1 31 7 25)(2 30 8 36)(3 29 9 35)(4 28 10 34)(5 27 11 33)(6 26 12 32)(13 56 19 50)(14 55 20 49)(15 54 21 60)(16 53 22 59)(17 52 23 58)(18 51 24 57)(37 62 43 68)(38 61 44 67)(39 72 45 66)(40 71 46 65)(41 70 47 64)(42 69 48 63)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,61)(59,62)(60,63), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(49,70)(50,71)(51,72)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69), (1,55,48,5,59,40,9,51,44)(2,56,37,6,60,41,10,52,45)(3,57,38,7,49,42,11,53,46)(4,58,39,8,50,43,12,54,47)(13,36,72,17,28,64,21,32,68)(14,25,61,18,29,65,22,33,69)(15,26,62,19,30,66,23,34,70)(16,27,63,20,31,67,24,35,71), (1,31,7,25)(2,30,8,36)(3,29,9,35)(4,28,10,34)(5,27,11,33)(6,26,12,32)(13,56,19,50)(14,55,20,49)(15,54,21,60)(16,53,22,59)(17,52,23,58)(18,51,24,57)(37,62,43,68)(38,61,44,67)(39,72,45,66)(40,71,46,65)(41,70,47,64)(42,69,48,63)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,61)(59,62)(60,63), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(49,70)(50,71)(51,72)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69), (1,55,48,5,59,40,9,51,44)(2,56,37,6,60,41,10,52,45)(3,57,38,7,49,42,11,53,46)(4,58,39,8,50,43,12,54,47)(13,36,72,17,28,64,21,32,68)(14,25,61,18,29,65,22,33,69)(15,26,62,19,30,66,23,34,70)(16,27,63,20,31,67,24,35,71), (1,31,7,25)(2,30,8,36)(3,29,9,35)(4,28,10,34)(5,27,11,33)(6,26,12,32)(13,56,19,50)(14,55,20,49)(15,54,21,60)(16,53,22,59)(17,52,23,58)(18,51,24,57)(37,62,43,68)(38,61,44,67)(39,72,45,66)(40,71,46,65)(41,70,47,64)(42,69,48,63) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,25),(11,26),(12,27),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48),(49,64),(50,65),(51,66),(52,67),(53,68),(54,69),(55,70),(56,71),(57,72),(58,61),(59,62),(60,63)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,46),(14,47),(15,48),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(49,70),(50,71),(51,72),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69)], [(1,55,48,5,59,40,9,51,44),(2,56,37,6,60,41,10,52,45),(3,57,38,7,49,42,11,53,46),(4,58,39,8,50,43,12,54,47),(13,36,72,17,28,64,21,32,68),(14,25,61,18,29,65,22,33,69),(15,26,62,19,30,66,23,34,70),(16,27,63,20,31,67,24,35,71)], [(1,31,7,25),(2,30,8,36),(3,29,9,35),(4,28,10,34),(5,27,11,33),(6,26,12,32),(13,56,19,50),(14,55,20,49),(15,54,21,60),(16,53,22,59),(17,52,23,58),(18,51,24,57),(37,62,43,68),(38,61,44,67),(39,72,45,66),(40,71,46,65),(41,70,47,64),(42,69,48,63)]])

Matrix representation of C12.1S4 in GL5(𝔽37)

314000
428000
003600
000360
000036
,
10000
01000
003600
000360
00001
,
10000
01000
00100
000360
000036
,
1027000
2736000
00001
00100
00010
,
2314000
1514000
00100
00001
00010

G:=sub<GL(5,GF(37))| [31,4,0,0,0,4,28,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36],[1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,36],[10,27,0,0,0,27,36,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[23,15,0,0,0,14,14,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

C12.1S4 in GAP, Magma, Sage, TeX

C_{12}._1S_4
% in TeX

G:=Group("C12.1S4");
// GroupNames label

G:=SmallGroup(288,332);
// by ID

G=gap.SmallGroup(288,332);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,28,85,36,1123,192,1684,6053,782,3534,1350]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=b^2=c^2=1,d^3=a^4,e^2=a^6,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,d*b*d^-1=e*b*e^-1=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e^-1=a^8*d^2>;
// generators/relations

Export

Character table of C12.1S4 in TeX

׿
×
𝔽