Extensions 1→N→G→Q→1 with N=M4(2) and Q=C3⋊S3

Direct product G=N×Q with N=M4(2) and Q=C3⋊S3
dρLabelID
M4(2)×C3⋊S372M4(2)xC3:S3288,763

Semidirect products G=N:Q with N=M4(2) and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
M4(2)⋊1(C3⋊S3) = C243D6φ: C3⋊S3/C32C2 ⊆ Out M4(2)72M4(2):1(C3:S3)288,765
M4(2)⋊2(C3⋊S3) = C24.5D6φ: C3⋊S3/C32C2 ⊆ Out M4(2)144M4(2):2(C3:S3)288,766
M4(2)⋊3(C3⋊S3) = C12.19D12φ: C3⋊S3/C32C2 ⊆ Out M4(2)72M4(2):3(C3:S3)288,298
M4(2)⋊4(C3⋊S3) = C62.37D4φ: C3⋊S3/C32C2 ⊆ Out M4(2)72M4(2):4(C3:S3)288,300
M4(2)⋊5(C3⋊S3) = C24.47D6φ: trivial image144M4(2):5(C3:S3)288,764

Non-split extensions G=N.Q with N=M4(2) and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
M4(2).1(C3⋊S3) = C62.8Q8φ: C3⋊S3/C32C2 ⊆ Out M4(2)144M4(2).1(C3:S3)288,297
M4(2).2(C3⋊S3) = C12.20D12φ: C3⋊S3/C32C2 ⊆ Out M4(2)144M4(2).2(C3:S3)288,299

׿
×
𝔽