Copied to
clipboard

G = C12.19D12order 288 = 25·32

19th non-split extension by C12 of D12 acting via D12/C6=C22

metabelian, supersoluble, monomial

Aliases: C12.19D12, (C2×C12).90D6, (C3×C12).51D4, C6.27(D6⋊C4), (C3×M4(2))⋊9S3, C62.40(C2×C4), C12.58D64C2, M4(2)⋊3(C3⋊S3), (C6×C12).57C22, C4.11(C12⋊S3), C326(C4.D4), C32(C12.46D4), C12.116(C3⋊D4), C4.21(C327D4), C2.9(C6.11D12), (C32×M4(2))⋊13C2, (C2×C6).14(C4×S3), C22.4(C4×C3⋊S3), (C22×C3⋊S3).2C4, (C2×C12⋊S3).10C2, (C3×C6).58(C22⋊C4), (C2×C4).1(C2×C3⋊S3), SmallGroup(288,298)

Series: Derived Chief Lower central Upper central

C1C62 — C12.19D12
C1C3C32C3×C6C3×C12C6×C12C2×C12⋊S3 — C12.19D12
C32C3×C6C62 — C12.19D12
C1C2C2×C4M4(2)

Generators and relations for C12.19D12
 G = < a,b,c | a12=1, b12=a6, c2=a9, bab-1=a7, cac-1=a5, cbc-1=a3b11 >

Subgroups: 748 in 138 conjugacy classes, 47 normal (17 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2×C4, D4, C23, C32, C12, D6, C2×C6, M4(2), M4(2), C2×D4, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, D12, C2×C12, C22×S3, C4.D4, C3×C12, C2×C3⋊S3, C62, C4.Dic3, C3×M4(2), C2×D12, C324C8, C3×C24, C12⋊S3, C6×C12, C22×C3⋊S3, C12.46D4, C12.58D6, C32×M4(2), C2×C12⋊S3, C12.19D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, C3⋊S3, C4×S3, D12, C3⋊D4, C4.D4, C2×C3⋊S3, D6⋊C4, C4×C3⋊S3, C12⋊S3, C327D4, C12.46D4, C6.11D12, C12.19D12

Smallest permutation representation of C12.19D12
On 72 points
Generators in S72
(1 35 56 7 41 62 13 47 68 19 29 50)(2 48 57 20 42 51 14 36 69 8 30 63)(3 37 58 9 43 64 15 25 70 21 31 52)(4 26 59 22 44 53 16 38 71 10 32 65)(5 39 60 11 45 66 17 27 72 23 33 54)(6 28 61 24 46 55 18 40 49 12 34 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 12 19 18 13 24 7 6)(2 5 8 23 14 17 20 11)(3 10 21 16 15 22 9 4)(25 71 43 53 37 59 31 65)(26 64 32 58 38 52 44 70)(27 69 45 51 39 57 33 63)(28 62 34 56 40 50 46 68)(29 67 47 49 41 55 35 61)(30 60 36 54 42 72 48 66)

G:=sub<Sym(72)| (1,35,56,7,41,62,13,47,68,19,29,50)(2,48,57,20,42,51,14,36,69,8,30,63)(3,37,58,9,43,64,15,25,70,21,31,52)(4,26,59,22,44,53,16,38,71,10,32,65)(5,39,60,11,45,66,17,27,72,23,33,54)(6,28,61,24,46,55,18,40,49,12,34,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,12,19,18,13,24,7,6)(2,5,8,23,14,17,20,11)(3,10,21,16,15,22,9,4)(25,71,43,53,37,59,31,65)(26,64,32,58,38,52,44,70)(27,69,45,51,39,57,33,63)(28,62,34,56,40,50,46,68)(29,67,47,49,41,55,35,61)(30,60,36,54,42,72,48,66)>;

G:=Group( (1,35,56,7,41,62,13,47,68,19,29,50)(2,48,57,20,42,51,14,36,69,8,30,63)(3,37,58,9,43,64,15,25,70,21,31,52)(4,26,59,22,44,53,16,38,71,10,32,65)(5,39,60,11,45,66,17,27,72,23,33,54)(6,28,61,24,46,55,18,40,49,12,34,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,12,19,18,13,24,7,6)(2,5,8,23,14,17,20,11)(3,10,21,16,15,22,9,4)(25,71,43,53,37,59,31,65)(26,64,32,58,38,52,44,70)(27,69,45,51,39,57,33,63)(28,62,34,56,40,50,46,68)(29,67,47,49,41,55,35,61)(30,60,36,54,42,72,48,66) );

G=PermutationGroup([[(1,35,56,7,41,62,13,47,68,19,29,50),(2,48,57,20,42,51,14,36,69,8,30,63),(3,37,58,9,43,64,15,25,70,21,31,52),(4,26,59,22,44,53,16,38,71,10,32,65),(5,39,60,11,45,66,17,27,72,23,33,54),(6,28,61,24,46,55,18,40,49,12,34,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,12,19,18,13,24,7,6),(2,5,8,23,14,17,20,11),(3,10,21,16,15,22,9,4),(25,71,43,53,37,59,31,65),(26,64,32,58,38,52,44,70),(27,69,45,51,39,57,33,63),(28,62,34,56,40,50,46,68),(29,67,47,49,41,55,35,61),(30,60,36,54,42,72,48,66)]])

51 conjugacy classes

class 1 2A2B2C2D3A3B3C3D4A4B6A6B6C6D6E6F6G6H8A8B8C8D12A···12H12I12J12K12L24A···24P
order1222233334466666666888812···121212121224···24
size1123636222222222244444436362···244444···4

51 irreducible representations

dim1111122222244
type++++++++++
imageC1C2C2C2C4S3D4D6D12C3⋊D4C4×S3C4.D4C12.46D4
kernelC12.19D12C12.58D6C32×M4(2)C2×C12⋊S3C22×C3⋊S3C3×M4(2)C3×C12C2×C12C12C12C2×C6C32C3
# reps1111442488818

Matrix representation of C12.19D12 in GL6(𝔽73)

36470000
26360000
00146600
007700
005625597
0022406666
,
26370000
36260000
00314722
002241711
0018444159
0065574033
,
37470000
47360000
001835520
006235221
0064192035
006954912

G:=sub<GL(6,GF(73))| [36,26,0,0,0,0,47,36,0,0,0,0,0,0,14,7,56,22,0,0,66,7,25,40,0,0,0,0,59,66,0,0,0,0,7,66],[26,36,0,0,0,0,37,26,0,0,0,0,0,0,31,22,18,65,0,0,4,41,44,57,0,0,72,71,41,40,0,0,2,1,59,33],[37,47,0,0,0,0,47,36,0,0,0,0,0,0,18,6,64,69,0,0,35,23,19,5,0,0,52,52,20,49,0,0,0,21,35,12] >;

C12.19D12 in GAP, Magma, Sage, TeX

C_{12}._{19}D_{12}
% in TeX

G:=Group("C12.19D12");
// GroupNames label

G:=SmallGroup(288,298);
// by ID

G=gap.SmallGroup(288,298);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,422,100,346,2693,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^12=a^6,c^2=a^9,b*a*b^-1=a^7,c*a*c^-1=a^5,c*b*c^-1=a^3*b^11>;
// generators/relations

׿
×
𝔽