Extensions 1→N→G→Q→1 with N=C3xDic3 and Q=Q8

Direct product G=NxQ with N=C3xDic3 and Q=Q8
dρLabelID
C3xQ8xDic396C3xQ8xDic3288,716

Semidirect products G=N:Q with N=C3xDic3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C3xDic3):1Q8 = C62.9C23φ: Q8/C2C22 ⊆ Out C3xDic396(C3xDic3):1Q8288,487
(C3xDic3):2Q8 = C62.10C23φ: Q8/C2C22 ⊆ Out C3xDic396(C3xDic3):2Q8288,488
(C3xDic3):3Q8 = Dic3:Dic6φ: Q8/C4C2 ⊆ Out C3xDic396(C3xDic3):3Q8288,514
(C3xDic3):4Q8 = C12:3Dic6φ: Q8/C4C2 ⊆ Out C3xDic396(C3xDic3):4Q8288,566
(C3xDic3):5Q8 = Dic3:5Dic6φ: Q8/C4C2 ⊆ Out C3xDic396(C3xDic3):5Q8288,485
(C3xDic3):6Q8 = Dic3xDic6φ: Q8/C4C2 ⊆ Out C3xDic396(C3xDic3):6Q8288,490
(C3xDic3):7Q8 = Dic3:6Dic6φ: Q8/C4C2 ⊆ Out C3xDic396(C3xDic3):7Q8288,492
(C3xDic3):8Q8 = C3xC12:Q8φ: Q8/C4C2 ⊆ Out C3xDic396(C3xDic3):8Q8288,659
(C3xDic3):9Q8 = C3xDic3:Q8φ: Q8/C4C2 ⊆ Out C3xDic396(C3xDic3):9Q8288,715
(C3xDic3):10Q8 = C3xDic6:C4φ: trivial image96(C3xDic3):10Q8288,658

Non-split extensions G=N.Q with N=C3xDic3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C3xDic3).1Q8 = Dic3.Dic6φ: Q8/C2C22 ⊆ Out C3xDic396(C3xDic3).1Q8288,493
(C3xDic3).2Q8 = C62.16C23φ: Q8/C2C22 ⊆ Out C3xDic396(C3xDic3).2Q8288,494
(C3xDic3).3Q8 = C62.37C23φ: Q8/C4C2 ⊆ Out C3xDic396(C3xDic3).3Q8288,515
(C3xDic3).4Q8 = C3xDic3.Q8φ: Q8/C4C2 ⊆ Out C3xDic396(C3xDic3).4Q8288,660

׿
x
:
Z
F
o
wr
Q
<