Copied to
clipboard

G = C123Dic6order 288 = 25·32

1st semidirect product of C12 and Dic6 acting via Dic6/Dic3=C2

metabelian, supersoluble, monomial

Aliases: C123Dic6, Dic34Dic6, Dic3.5D12, C62.88C23, (C3×C12)⋊3Q8, C31(C12⋊Q8), C6.25(S3×D4), C327(C4⋊Q8), C6.31(S3×Q8), (C3×Dic3)⋊4Q8, C6.26(C2×D12), C2.27(S3×D12), C4⋊Dic3.7S3, C31(C122Q8), (C2×C12).283D6, C41(C322Q8), (C4×Dic3).5S3, C6.19(C2×Dic6), C2.19(S3×Dic6), (C3×Dic3).24D4, (Dic3×C12).9C2, (C2×Dic3).36D6, Dic3⋊Dic3.3C2, (C6×C12).110C22, C12⋊Dic3.17C2, (C6×Dic3).20C22, (C2×C4).84S32, (C3×C6).59(C2×D4), (C3×C6).39(C2×Q8), C22.125(C2×S32), C2.6(C2×C322Q8), (C3×C4⋊Dic3).16C2, (C2×C322Q8).3C2, (C2×C6).107(C22×S3), (C2×C3⋊Dic3).57C22, SmallGroup(288,566)

Series: Derived Chief Lower central Upper central

C1C62 — C123Dic6
C1C3C32C3×C6C62C6×Dic3C2×C322Q8 — C123Dic6
C32C62 — C123Dic6
C1C22C2×C4

Generators and relations for C123Dic6
 G = < a,b,c | a12=b12=1, c2=b6, bab-1=a-1, ac=ca, cbc-1=b-1 >

Subgroups: 522 in 149 conjugacy classes, 60 normal (34 characteristic)
C1, C2, C3, C3, C4, C4, C22, C6, C6, C2×C4, C2×C4, Q8, C32, Dic3, Dic3, C12, C12, C2×C6, C2×C6, C42, C4⋊C4, C2×Q8, C3×C6, Dic6, C2×Dic3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C4⋊Q8, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, C62, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, C4×C12, C3×C4⋊C4, C2×Dic6, C322Q8, C6×Dic3, C6×Dic3, C2×C3⋊Dic3, C6×C12, C122Q8, C12⋊Q8, Dic3⋊Dic3, Dic3×C12, C3×C4⋊Dic3, C12⋊Dic3, C2×C322Q8, C123Dic6
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, Dic6, D12, C22×S3, C4⋊Q8, S32, C2×Dic6, C2×D12, S3×D4, S3×Q8, C322Q8, C2×S32, C122Q8, C12⋊Q8, S3×Dic6, S3×D12, C2×C322Q8, C123Dic6

Smallest permutation representation of C123Dic6
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 17 26 95 9 21 34 87 5 13 30 91)(2 16 27 94 10 20 35 86 6 24 31 90)(3 15 28 93 11 19 36 85 7 23 32 89)(4 14 29 92 12 18 25 96 8 22 33 88)(37 68 49 73 45 72 57 77 41 64 53 81)(38 67 50 84 46 71 58 76 42 63 54 80)(39 66 51 83 47 70 59 75 43 62 55 79)(40 65 52 82 48 69 60 74 44 61 56 78)
(1 74 34 65)(2 75 35 66)(3 76 36 67)(4 77 25 68)(5 78 26 69)(6 79 27 70)(7 80 28 71)(8 81 29 72)(9 82 30 61)(10 83 31 62)(11 84 32 63)(12 73 33 64)(13 56 95 48)(14 57 96 37)(15 58 85 38)(16 59 86 39)(17 60 87 40)(18 49 88 41)(19 50 89 42)(20 51 90 43)(21 52 91 44)(22 53 92 45)(23 54 93 46)(24 55 94 47)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,17,26,95,9,21,34,87,5,13,30,91)(2,16,27,94,10,20,35,86,6,24,31,90)(3,15,28,93,11,19,36,85,7,23,32,89)(4,14,29,92,12,18,25,96,8,22,33,88)(37,68,49,73,45,72,57,77,41,64,53,81)(38,67,50,84,46,71,58,76,42,63,54,80)(39,66,51,83,47,70,59,75,43,62,55,79)(40,65,52,82,48,69,60,74,44,61,56,78), (1,74,34,65)(2,75,35,66)(3,76,36,67)(4,77,25,68)(5,78,26,69)(6,79,27,70)(7,80,28,71)(8,81,29,72)(9,82,30,61)(10,83,31,62)(11,84,32,63)(12,73,33,64)(13,56,95,48)(14,57,96,37)(15,58,85,38)(16,59,86,39)(17,60,87,40)(18,49,88,41)(19,50,89,42)(20,51,90,43)(21,52,91,44)(22,53,92,45)(23,54,93,46)(24,55,94,47)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,17,26,95,9,21,34,87,5,13,30,91)(2,16,27,94,10,20,35,86,6,24,31,90)(3,15,28,93,11,19,36,85,7,23,32,89)(4,14,29,92,12,18,25,96,8,22,33,88)(37,68,49,73,45,72,57,77,41,64,53,81)(38,67,50,84,46,71,58,76,42,63,54,80)(39,66,51,83,47,70,59,75,43,62,55,79)(40,65,52,82,48,69,60,74,44,61,56,78), (1,74,34,65)(2,75,35,66)(3,76,36,67)(4,77,25,68)(5,78,26,69)(6,79,27,70)(7,80,28,71)(8,81,29,72)(9,82,30,61)(10,83,31,62)(11,84,32,63)(12,73,33,64)(13,56,95,48)(14,57,96,37)(15,58,85,38)(16,59,86,39)(17,60,87,40)(18,49,88,41)(19,50,89,42)(20,51,90,43)(21,52,91,44)(22,53,92,45)(23,54,93,46)(24,55,94,47) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,17,26,95,9,21,34,87,5,13,30,91),(2,16,27,94,10,20,35,86,6,24,31,90),(3,15,28,93,11,19,36,85,7,23,32,89),(4,14,29,92,12,18,25,96,8,22,33,88),(37,68,49,73,45,72,57,77,41,64,53,81),(38,67,50,84,46,71,58,76,42,63,54,80),(39,66,51,83,47,70,59,75,43,62,55,79),(40,65,52,82,48,69,60,74,44,61,56,78)], [(1,74,34,65),(2,75,35,66),(3,76,36,67),(4,77,25,68),(5,78,26,69),(6,79,27,70),(7,80,28,71),(8,81,29,72),(9,82,30,61),(10,83,31,62),(11,84,32,63),(12,73,33,64),(13,56,95,48),(14,57,96,37),(15,58,85,38),(16,59,86,39),(17,60,87,40),(18,49,88,41),(19,50,89,42),(20,51,90,43),(21,52,91,44),(22,53,92,45),(23,54,93,46),(24,55,94,47)]])

48 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F4G4H4I4J6A···6F6G6H6I12A12B12C12D12E···12J12K···12R12S12T12U12V
order122233344444444446···66661212121212···1212···1212121212
size1111224226666121236362···244422224···46···612121212

48 irreducible representations

dim11111122222222224444444
type+++++++++--++-+-++--+-+
imageC1C2C2C2C2C2S3S3D4Q8Q8D6D6Dic6D12Dic6S32S3×D4S3×Q8C322Q8C2×S32S3×Dic6S3×D12
kernelC123Dic6Dic3⋊Dic3Dic3×C12C3×C4⋊Dic3C12⋊Dic3C2×C322Q8C4×Dic3C4⋊Dic3C3×Dic3C3×Dic3C3×C12C2×Dic3C2×C12Dic3Dic3C12C2×C4C6C6C4C22C2C2
# reps12111211222424481112122

Matrix representation of C123Dic6 in GL6(𝔽13)

300000
090000
006000
0001100
000010
000001
,
0100000
900000
0001000
004000
0000012
0000112
,
500000
080000
001000
000100
000001
000010

G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,9,0,0,0,0,0,0,6,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,9,0,0,0,0,10,0,0,0,0,0,0,0,0,4,0,0,0,0,10,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C123Dic6 in GAP, Magma, Sage, TeX

C_{12}\rtimes_3{\rm Dic}_6
% in TeX

G:=Group("C12:3Dic6");
// GroupNames label

G:=SmallGroup(288,566);
// by ID

G=gap.SmallGroup(288,566);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,141,64,219,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=b^12=1,c^2=b^6,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽