Extensions 1→N→G→Q→1 with N=Dic3 and Q=C3×D4

Direct product G=N×Q with N=Dic3 and Q=C3×D4
dρLabelID
C3×D4×Dic348C3xD4xDic3288,705

Semidirect products G=N:Q with N=Dic3 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
Dic31(C3×D4) = C3×C123D4φ: C3×D4/C12C2 ⊆ Out Dic348Dic3:1(C3xD4)288,711
Dic32(C3×D4) = C3×Dic3⋊D4φ: C3×D4/C2×C6C2 ⊆ Out Dic348Dic3:2(C3xD4)288,655
Dic33(C3×D4) = C3×C23.14D6φ: C3×D4/C2×C6C2 ⊆ Out Dic348Dic3:3(C3xD4)288,710
Dic34(C3×D4) = C3×Dic34D4φ: trivial image48Dic3:4(C3xD4)288,652
Dic35(C3×D4) = C3×Dic35D4φ: trivial image96Dic3:5(C3xD4)288,664

Non-split extensions G=N.Q with N=Dic3 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
Dic3.1(C3×D4) = C3×C23.11D6φ: C3×D4/C12C2 ⊆ Out Dic348Dic3.1(C3xD4)288,656
Dic3.2(C3×D4) = C3×C12⋊Q8φ: C3×D4/C12C2 ⊆ Out Dic396Dic3.2(C3xD4)288,659
Dic3.3(C3×D4) = C3×S3×D8φ: C3×D4/C12C2 ⊆ Out Dic3484Dic3.3(C3xD4)288,681
Dic3.4(C3×D4) = C3×S3×SD16φ: C3×D4/C12C2 ⊆ Out Dic3484Dic3.4(C3xD4)288,684
Dic3.5(C3×D4) = C3×S3×Q16φ: C3×D4/C12C2 ⊆ Out Dic3964Dic3.5(C3xD4)288,688
Dic3.6(C3×D4) = C3×Dic3.D4φ: C3×D4/C2×C6C2 ⊆ Out Dic348Dic3.6(C3xD4)288,649
Dic3.7(C3×D4) = C3×D6⋊Q8φ: C3×D4/C2×C6C2 ⊆ Out Dic396Dic3.7(C3xD4)288,667
Dic3.8(C3×D4) = C3×D8⋊S3φ: C3×D4/C2×C6C2 ⊆ Out Dic3484Dic3.8(C3xD4)288,682
Dic3.9(C3×D4) = C3×Q83D6φ: C3×D4/C2×C6C2 ⊆ Out Dic3484Dic3.9(C3xD4)288,685
Dic3.10(C3×D4) = C3×D4.D6φ: C3×D4/C2×C6C2 ⊆ Out Dic3484Dic3.10(C3xD4)288,686
Dic3.11(C3×D4) = C3×Q16⋊S3φ: C3×D4/C2×C6C2 ⊆ Out Dic3964Dic3.11(C3xD4)288,689
Dic3.12(C3×D4) = C3×D83S3φ: trivial image484Dic3.12(C3xD4)288,683
Dic3.13(C3×D4) = C3×Q8.7D6φ: trivial image484Dic3.13(C3xD4)288,687
Dic3.14(C3×D4) = C3×D24⋊C2φ: trivial image964Dic3.14(C3xD4)288,690

׿
×
𝔽