Extensions 1→N→G→Q→1 with N=Dic3 and Q=C3xD4

Direct product G=NxQ with N=Dic3 and Q=C3xD4
dρLabelID
C3xD4xDic348C3xD4xDic3288,705

Semidirect products G=N:Q with N=Dic3 and Q=C3xD4
extensionφ:Q→Out NdρLabelID
Dic3:1(C3xD4) = C3xC12:3D4φ: C3xD4/C12C2 ⊆ Out Dic348Dic3:1(C3xD4)288,711
Dic3:2(C3xD4) = C3xDic3:D4φ: C3xD4/C2xC6C2 ⊆ Out Dic348Dic3:2(C3xD4)288,655
Dic3:3(C3xD4) = C3xC23.14D6φ: C3xD4/C2xC6C2 ⊆ Out Dic348Dic3:3(C3xD4)288,710
Dic3:4(C3xD4) = C3xDic3:4D4φ: trivial image48Dic3:4(C3xD4)288,652
Dic3:5(C3xD4) = C3xDic3:5D4φ: trivial image96Dic3:5(C3xD4)288,664

Non-split extensions G=N.Q with N=Dic3 and Q=C3xD4
extensionφ:Q→Out NdρLabelID
Dic3.1(C3xD4) = C3xC23.11D6φ: C3xD4/C12C2 ⊆ Out Dic348Dic3.1(C3xD4)288,656
Dic3.2(C3xD4) = C3xC12:Q8φ: C3xD4/C12C2 ⊆ Out Dic396Dic3.2(C3xD4)288,659
Dic3.3(C3xD4) = C3xS3xD8φ: C3xD4/C12C2 ⊆ Out Dic3484Dic3.3(C3xD4)288,681
Dic3.4(C3xD4) = C3xS3xSD16φ: C3xD4/C12C2 ⊆ Out Dic3484Dic3.4(C3xD4)288,684
Dic3.5(C3xD4) = C3xS3xQ16φ: C3xD4/C12C2 ⊆ Out Dic3964Dic3.5(C3xD4)288,688
Dic3.6(C3xD4) = C3xDic3.D4φ: C3xD4/C2xC6C2 ⊆ Out Dic348Dic3.6(C3xD4)288,649
Dic3.7(C3xD4) = C3xD6:Q8φ: C3xD4/C2xC6C2 ⊆ Out Dic396Dic3.7(C3xD4)288,667
Dic3.8(C3xD4) = C3xD8:S3φ: C3xD4/C2xC6C2 ⊆ Out Dic3484Dic3.8(C3xD4)288,682
Dic3.9(C3xD4) = C3xQ8:3D6φ: C3xD4/C2xC6C2 ⊆ Out Dic3484Dic3.9(C3xD4)288,685
Dic3.10(C3xD4) = C3xD4.D6φ: C3xD4/C2xC6C2 ⊆ Out Dic3484Dic3.10(C3xD4)288,686
Dic3.11(C3xD4) = C3xQ16:S3φ: C3xD4/C2xC6C2 ⊆ Out Dic3964Dic3.11(C3xD4)288,689
Dic3.12(C3xD4) = C3xD8:3S3φ: trivial image484Dic3.12(C3xD4)288,683
Dic3.13(C3xD4) = C3xQ8.7D6φ: trivial image484Dic3.13(C3xD4)288,687
Dic3.14(C3xD4) = C3xD24:C2φ: trivial image964Dic3.14(C3xD4)288,690

׿
x
:
Z
F
o
wr
Q
<