Copied to
clipboard

G = C3xD4xDic3order 288 = 25·32

Direct product of C3, D4 and Dic3

direct product, metabelian, supersoluble, monomial

Aliases: C3xD4xDic3, C62.199C23, C3:5(D4xC12), C12:3(C2xC12), (C3xD4):3C12, (C6xD4).4C6, C4:1(C6xDic3), C6.37(C6xD4), C32:24(C4xD4), C4:Dic3:13C6, C62:11(C2xC4), (C4xDic3):4C6, (C6xD4).30S3, C12:6(C2xDic3), C6.197(S3xD4), (D4xC32):8C4, C6.D4:7C6, (C2xC12).325D6, C23.27(S3xC6), C22:3(C6xDic3), (Dic3xC12):14C2, C6.25(C22xC12), (C22xDic3):7C6, (C22xC6).108D6, (C6xC12).120C22, (C2xC62).54C22, C6.122(D4:2S3), C6.45(C22xDic3), (C6xDic3).136C22, C2.5(C3xS3xD4), (D4xC3xC6).6C2, (C2xC6):5(C2xC12), (Dic3xC2xC6):8C2, (C3xC12):11(C2xC4), C2.6(Dic3xC2xC6), (C2xC4).49(S3xC6), (C2xD4).7(C3xS3), (C2xC6):7(C2xDic3), C6.28(C3xC4oD4), C22.25(S3xC2xC6), (C2xC12).31(C2xC6), (C3xC4:Dic3):22C2, C2.5(C3xD4:2S3), (C3xC6).225(C2xD4), (C3xC6.D4):6C2, (C22xC6).28(C2xC6), (C2xC6).54(C22xC6), (C3xC6).136(C4oD4), (C2xC6).332(C22xS3), (C3xC6).116(C22xC4), (C2xDic3).50(C2xC6), SmallGroup(288,705)

Series: Derived Chief Lower central Upper central

C1C6 — C3xD4xDic3
C1C3C6C2xC6C62C6xDic3Dic3xC2xC6 — C3xD4xDic3
C3C6 — C3xD4xDic3
C1C2xC6C6xD4

Generators and relations for C3xD4xDic3
 G = < a,b,c,d,e | a3=b4=c2=d6=1, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 426 in 215 conjugacy classes, 102 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, C22, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, Dic3, C12, C12, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C22xC4, C2xD4, C3xC6, C3xC6, C2xDic3, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xD4, C3xD4, C22xC6, C22xC6, C4xD4, C3xDic3, C3xDic3, C3xC12, C62, C62, C62, C4xDic3, C4:Dic3, C6.D4, C4xC12, C3xC22:C4, C3xC4:C4, C22xDic3, C22xC12, C6xD4, C6xD4, C6xDic3, C6xDic3, C6xDic3, C6xC12, D4xC32, C2xC62, D4xDic3, D4xC12, Dic3xC12, C3xC4:Dic3, C3xC6.D4, Dic3xC2xC6, D4xC3xC6, C3xD4xDic3
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D4, C23, Dic3, C12, D6, C2xC6, C22xC4, C2xD4, C4oD4, C3xS3, C2xDic3, C2xC12, C3xD4, C22xS3, C22xC6, C4xD4, C3xDic3, S3xC6, S3xD4, D4:2S3, C22xDic3, C22xC12, C6xD4, C3xC4oD4, C6xDic3, S3xC2xC6, D4xDic3, D4xC12, C3xS3xD4, C3xD4:2S3, Dic3xC2xC6, C3xD4xDic3

Smallest permutation representation of C3xD4xDic3
On 48 points
Generators in S48
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)
(1 21 16 30)(2 22 17 25)(3 23 18 26)(4 24 13 27)(5 19 14 28)(6 20 15 29)(7 36 45 41)(8 31 46 42)(9 32 47 37)(10 33 48 38)(11 34 43 39)(12 35 44 40)
(7 45)(8 46)(9 47)(10 48)(11 43)(12 44)(19 28)(20 29)(21 30)(22 25)(23 26)(24 27)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 33 4 36)(2 32 5 35)(3 31 6 34)(7 30 10 27)(8 29 11 26)(9 28 12 25)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)

G:=sub<Sym(48)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,21,16,30)(2,22,17,25)(3,23,18,26)(4,24,13,27)(5,19,14,28)(6,20,15,29)(7,36,45,41)(8,31,46,42)(9,32,47,37)(10,33,48,38)(11,34,43,39)(12,35,44,40), (7,45)(8,46)(9,47)(10,48)(11,43)(12,44)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45)>;

G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,21,16,30)(2,22,17,25)(3,23,18,26)(4,24,13,27)(5,19,14,28)(6,20,15,29)(7,36,45,41)(8,31,46,42)(9,32,47,37)(10,33,48,38)(11,34,43,39)(12,35,44,40), (7,45)(8,46)(9,47)(10,48)(11,43)(12,44)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45) );

G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46)], [(1,21,16,30),(2,22,17,25),(3,23,18,26),(4,24,13,27),(5,19,14,28),(6,20,15,29),(7,36,45,41),(8,31,46,42),(9,32,47,37),(10,33,48,38),(11,34,43,39),(12,35,44,40)], [(7,45),(8,46),(9,47),(10,48),(11,43),(12,44),(19,28),(20,29),(21,30),(22,25),(23,26),(24,27)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,33,4,36),(2,32,5,35),(3,31,6,34),(7,30,10,27),(8,29,11,26),(9,28,12,25),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45)]])

90 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B4C4D4E4F4G···4L6A···6F6G···6W6X···6AI12A12B12C12D12E···12L12M···12R12S···12AD
order12222222333334444444···46···66···66···61212121212···1212···1212···12
size11112222112222233336···61···12···24···422223···34···46···6

90 irreducible representations

dim111111111111112222222222224444
type+++++++++-++-
imageC1C2C2C2C2C2C3C4C6C6C6C6C6C12S3D4D6Dic3D6C4oD4C3xS3C3xD4S3xC6C3xDic3S3xC6C3xC4oD4S3xD4D4:2S3C3xS3xD4C3xD4:2S3
kernelC3xD4xDic3Dic3xC12C3xC4:Dic3C3xC6.D4Dic3xC2xC6D4xC3xC6D4xDic3D4xC32C4xDic3C4:Dic3C6.D4C22xDic3C6xD4C3xD4C6xD4C3xDic3C2xC12C3xD4C22xC6C3xC6C2xD4Dic3C2xC4D4C23C6C6C6C2C2
# reps1112212822442161214222428441122

Matrix representation of C3xD4xDic3 in GL4(F13) generated by

1000
0100
0090
0009
,
0100
12000
00120
00012
,
1000
01200
0010
0001
,
12000
01200
00100
0004
,
5000
0500
0001
00120
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9],[0,12,0,0,1,0,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,10,0,0,0,0,4],[5,0,0,0,0,5,0,0,0,0,0,12,0,0,1,0] >;

C3xD4xDic3 in GAP, Magma, Sage, TeX

C_3\times D_4\times {\rm Dic}_3
% in TeX

G:=Group("C3xD4xDic3");
// GroupNames label

G:=SmallGroup(288,705);
// by ID

G=gap.SmallGroup(288,705);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,168,555,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^6=1,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<