Extensions 1→N→G→Q→1 with N=C3xC6 and Q=M4(2)

Direct product G=NxQ with N=C3xC6 and Q=M4(2)
dρLabelID
M4(2)xC3xC6144M4(2)xC3xC6288,827

Semidirect products G=N:Q with N=C3xC6 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
(C3xC6):1M4(2) = C2xC32:M4(2)φ: M4(2)/C4C4 ⊆ Aut C3xC648(C3xC6):1M4(2)288,930
(C3xC6):2M4(2) = C2xD6.Dic3φ: M4(2)/C4C22 ⊆ Aut C3xC696(C3xC6):2M4(2)288,467
(C3xC6):3M4(2) = C2xC12.31D6φ: M4(2)/C4C22 ⊆ Aut C3xC648(C3xC6):3M4(2)288,468
(C3xC6):4M4(2) = C2xC62.C4φ: M4(2)/C22C4 ⊆ Aut C3xC648(C3xC6):4M4(2)288,940
(C3xC6):5M4(2) = C6xC8:S3φ: M4(2)/C8C2 ⊆ Aut C3xC696(C3xC6):5M4(2)288,671
(C3xC6):6M4(2) = C2xC24:S3φ: M4(2)/C8C2 ⊆ Aut C3xC6144(C3xC6):6M4(2)288,757
(C3xC6):7M4(2) = C6xC4.Dic3φ: M4(2)/C2xC4C2 ⊆ Aut C3xC648(C3xC6):7M4(2)288,692
(C3xC6):8M4(2) = C2xC12.58D6φ: M4(2)/C2xC4C2 ⊆ Aut C3xC6144(C3xC6):8M4(2)288,778

Non-split extensions G=N.Q with N=C3xC6 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
(C3xC6).1M4(2) = (C3xC12):4C8φ: M4(2)/C4C4 ⊆ Aut C3xC696(C3xC6).1M4(2)288,424
(C3xC6).2M4(2) = C62.6(C2xC4)φ: M4(2)/C4C4 ⊆ Aut C3xC648(C3xC6).2M4(2)288,426
(C3xC6).3M4(2) = C3:C8:Dic3φ: M4(2)/C4C22 ⊆ Aut C3xC696(C3xC6).3M4(2)288,202
(C3xC6).4M4(2) = C2.Dic32φ: M4(2)/C4C22 ⊆ Aut C3xC696(C3xC6).4M4(2)288,203
(C3xC6).5M4(2) = C12.77D12φ: M4(2)/C4C22 ⊆ Aut C3xC696(C3xC6).5M4(2)288,204
(C3xC6).6M4(2) = C12.78D12φ: M4(2)/C4C22 ⊆ Aut C3xC648(C3xC6).6M4(2)288,205
(C3xC6).7M4(2) = C12.81D12φ: M4(2)/C4C22 ⊆ Aut C3xC696(C3xC6).7M4(2)288,219
(C3xC6).8M4(2) = C12.15Dic6φ: M4(2)/C4C22 ⊆ Aut C3xC696(C3xC6).8M4(2)288,220
(C3xC6).9M4(2) = C32:2C8:C4φ: M4(2)/C22C4 ⊆ Aut C3xC696(C3xC6).9M4(2)288,425
(C3xC6).10M4(2) = C32:5(C4:C8)φ: M4(2)/C22C4 ⊆ Aut C3xC696(C3xC6).10M4(2)288,427
(C3xC6).11M4(2) = C62:3C8φ: M4(2)/C22C4 ⊆ Aut C3xC648(C3xC6).11M4(2)288,435
(C3xC6).12M4(2) = C3xDic3:C8φ: M4(2)/C8C2 ⊆ Aut C3xC696(C3xC6).12M4(2)288,248
(C3xC6).13M4(2) = C3xC24:C4φ: M4(2)/C8C2 ⊆ Aut C3xC696(C3xC6).13M4(2)288,249
(C3xC6).14M4(2) = C3xD6:C8φ: M4(2)/C8C2 ⊆ Aut C3xC696(C3xC6).14M4(2)288,254
(C3xC6).15M4(2) = C12.30Dic6φ: M4(2)/C8C2 ⊆ Aut C3xC6288(C3xC6).15M4(2)288,289
(C3xC6).16M4(2) = C24:Dic3φ: M4(2)/C8C2 ⊆ Aut C3xC6288(C3xC6).16M4(2)288,290
(C3xC6).17M4(2) = C12.60D12φ: M4(2)/C8C2 ⊆ Aut C3xC6144(C3xC6).17M4(2)288,295
(C3xC6).18M4(2) = C3xC42.S3φ: M4(2)/C2xC4C2 ⊆ Aut C3xC696(C3xC6).18M4(2)288,237
(C3xC6).19M4(2) = C3xC12:C8φ: M4(2)/C2xC4C2 ⊆ Aut C3xC696(C3xC6).19M4(2)288,238
(C3xC6).20M4(2) = C3xC12.55D4φ: M4(2)/C2xC4C2 ⊆ Aut C3xC648(C3xC6).20M4(2)288,264
(C3xC6).21M4(2) = C122.C2φ: M4(2)/C2xC4C2 ⊆ Aut C3xC6288(C3xC6).21M4(2)288,278
(C3xC6).22M4(2) = C12.57D12φ: M4(2)/C2xC4C2 ⊆ Aut C3xC6288(C3xC6).22M4(2)288,279
(C3xC6).23M4(2) = C62:7C8φ: M4(2)/C2xC4C2 ⊆ Aut C3xC6144(C3xC6).23M4(2)288,305
(C3xC6).24M4(2) = C32xC8:C4central extension (φ=1)288(C3xC6).24M4(2)288,315
(C3xC6).25M4(2) = C32xC22:C8central extension (φ=1)144(C3xC6).25M4(2)288,316
(C3xC6).26M4(2) = C32xC4:C8central extension (φ=1)288(C3xC6).26M4(2)288,323

׿
x
:
Z
F
o
wr
Q
<