Aliases: (C3×C12)⋊4C8, C32⋊4(C4⋊C8), C4⋊(C32⋊2C8), (C6×C12).5C4, C3⋊Dic3.8Q8, C62.4(C2×C4), C3⋊Dic3.37D4, (C3×C6).1M4(2), C2.1(C32⋊M4(2)), (C3×C6).25(C2×C8), (C3×C6).15(C4⋊C4), (C2×C4).6(C32⋊C4), C2.4(C2×C32⋊2C8), C22.9(C2×C32⋊C4), C2.1(C4⋊(C32⋊C4)), (C4×C3⋊Dic3).15C2, (C2×C3⋊Dic3).14C4, (C2×C32⋊2C8).2C2, (C2×C3⋊Dic3).108C22, SmallGroup(288,424)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C2×C3⋊Dic3 — C2×C32⋊2C8 — (C3×C12)⋊4C8 |
Generators and relations for (C3×C12)⋊4C8
G = < a,b,c | a3=b12=c8=1, ab=ba, cac-1=a-1b4, cbc-1=ab7 >
Subgroups: 272 in 68 conjugacy classes, 24 normal (18 characteristic)
C1, C2, C3, C4, C4, C22, C6, C8, C2×C4, C2×C4, C32, Dic3, C12, C2×C6, C42, C2×C8, C3×C6, C2×Dic3, C2×C12, C4⋊C8, C3⋊Dic3, C3⋊Dic3, C3×C12, C62, C4×Dic3, C32⋊2C8, C2×C3⋊Dic3, C6×C12, C4×C3⋊Dic3, C2×C32⋊2C8, (C3×C12)⋊4C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C4⋊C4, C2×C8, M4(2), C4⋊C8, C32⋊C4, C32⋊2C8, C2×C32⋊C4, C32⋊M4(2), C4⋊(C32⋊C4), C2×C32⋊2C8, (C3×C12)⋊4C8
(25 29 33)(26 30 34)(27 31 35)(28 32 36)(49 53 57)(50 54 58)(51 55 59)(52 56 60)(61 65 69)(62 66 70)(63 67 71)(64 68 72)(85 89 93)(86 90 94)(87 91 95)(88 92 96)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 72 23 57 41 29 78 95)(2 67 16 56 42 36 83 94)(3 62 21 55 43 31 76 93)(4 69 14 54 44 26 81 92)(5 64 19 53 45 33 74 91)(6 71 24 52 46 28 79 90)(7 66 17 51 47 35 84 89)(8 61 22 50 48 30 77 88)(9 68 15 49 37 25 82 87)(10 63 20 60 38 32 75 86)(11 70 13 59 39 27 80 85)(12 65 18 58 40 34 73 96)
G:=sub<Sym(96)| (25,29,33)(26,30,34)(27,31,35)(28,32,36)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,65,69)(62,66,70)(63,67,71)(64,68,72)(85,89,93)(86,90,94)(87,91,95)(88,92,96), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,72,23,57,41,29,78,95)(2,67,16,56,42,36,83,94)(3,62,21,55,43,31,76,93)(4,69,14,54,44,26,81,92)(5,64,19,53,45,33,74,91)(6,71,24,52,46,28,79,90)(7,66,17,51,47,35,84,89)(8,61,22,50,48,30,77,88)(9,68,15,49,37,25,82,87)(10,63,20,60,38,32,75,86)(11,70,13,59,39,27,80,85)(12,65,18,58,40,34,73,96)>;
G:=Group( (25,29,33)(26,30,34)(27,31,35)(28,32,36)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,65,69)(62,66,70)(63,67,71)(64,68,72)(85,89,93)(86,90,94)(87,91,95)(88,92,96), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,72,23,57,41,29,78,95)(2,67,16,56,42,36,83,94)(3,62,21,55,43,31,76,93)(4,69,14,54,44,26,81,92)(5,64,19,53,45,33,74,91)(6,71,24,52,46,28,79,90)(7,66,17,51,47,35,84,89)(8,61,22,50,48,30,77,88)(9,68,15,49,37,25,82,87)(10,63,20,60,38,32,75,86)(11,70,13,59,39,27,80,85)(12,65,18,58,40,34,73,96) );
G=PermutationGroup([[(25,29,33),(26,30,34),(27,31,35),(28,32,36),(49,53,57),(50,54,58),(51,55,59),(52,56,60),(61,65,69),(62,66,70),(63,67,71),(64,68,72),(85,89,93),(86,90,94),(87,91,95),(88,92,96)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,72,23,57,41,29,78,95),(2,67,16,56,42,36,83,94),(3,62,21,55,43,31,76,93),(4,69,14,54,44,26,81,92),(5,64,19,53,45,33,74,91),(6,71,24,52,46,28,79,90),(7,66,17,51,47,35,84,89),(8,61,22,50,48,30,77,88),(9,68,15,49,37,25,82,87),(10,63,20,60,38,32,75,86),(11,70,13,59,39,27,80,85),(12,65,18,58,40,34,73,96)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6F | 8A | ··· | 8H | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 9 | 9 | 9 | 9 | 18 | 18 | 4 | ··· | 4 | 18 | ··· | 18 | 4 | ··· | 4 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | - | + | - | + | ||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | D4 | Q8 | M4(2) | C32⋊C4 | C32⋊2C8 | C2×C32⋊C4 | C32⋊M4(2) | C4⋊(C32⋊C4) |
kernel | (C3×C12)⋊4C8 | C4×C3⋊Dic3 | C2×C32⋊2C8 | C2×C3⋊Dic3 | C6×C12 | C3×C12 | C3⋊Dic3 | C3⋊Dic3 | C3×C6 | C2×C4 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 2 | 4 | 2 | 4 | 4 |
Matrix representation of (C3×C12)⋊4C8 ►in GL8(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 | 72 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 71 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 63 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 59 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 27 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 72 | 71 | 72 |
0 | 0 | 0 | 0 | 65 | 20 | 1 | 0 |
0 | 0 | 0 | 0 | 20 | 62 | 1 | 0 |
G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[1,1,0,0,0,0,0,0,71,72,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,72,72,0,1,0,0,0,0,1,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[10,10,0,0,0,0,0,0,0,63,0,0,0,0,0,0,0,0,59,27,0,0,0,0,0,0,9,14,0,0,0,0,0,0,0,0,0,72,65,20,0,0,0,0,0,72,20,62,0,0,0,0,72,71,1,1,0,0,0,0,1,72,0,0] >;
(C3×C12)⋊4C8 in GAP, Magma, Sage, TeX
(C_3\times C_{12})\rtimes_4C_8
% in TeX
G:=Group("(C3xC12):4C8");
// GroupNames label
G:=SmallGroup(288,424);
// by ID
G=gap.SmallGroup(288,424);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,64,100,9413,691,12550,2372]);
// Polycyclic
G:=Group<a,b,c|a^3=b^12=c^8=1,a*b=b*a,c*a*c^-1=a^-1*b^4,c*b*c^-1=a*b^7>;
// generators/relations