Extensions 1→N→G→Q→1 with N=C3xQ8 and Q=Dic3

Direct product G=NxQ with N=C3xQ8 and Q=Dic3
dρLabelID
C3xQ8xDic396C3xQ8xDic3288,716

Semidirect products G=N:Q with N=C3xQ8 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3xQ8):1Dic3 = C6.GL2(F3)φ: Dic3/C2S3 ⊆ Out C3xQ896(C3xQ8):1Dic3288,403
(C3xQ8):2Dic3 = C3xQ8:Dic3φ: Dic3/C2S3 ⊆ Out C3xQ896(C3xQ8):2Dic3288,399
(C3xQ8):3Dic3 = C62.117D4φ: Dic3/C6C2 ⊆ Out C3xQ8288(C3xQ8):3Dic3288,310
(C3xQ8):4Dic3 = C62.39D4φ: Dic3/C6C2 ⊆ Out C3xQ872(C3xQ8):4Dic3288,312
(C3xQ8):5Dic3 = Q8xC3:Dic3φ: Dic3/C6C2 ⊆ Out C3xQ8288(C3xQ8):5Dic3288,802
(C3xQ8):6Dic3 = C3xQ8:2Dic3φ: Dic3/C6C2 ⊆ Out C3xQ896(C3xQ8):6Dic3288,269
(C3xQ8):7Dic3 = C3xQ8:3Dic3φ: Dic3/C6C2 ⊆ Out C3xQ8484(C3xQ8):7Dic3288,271

Non-split extensions G=N.Q with N=C3xQ8 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3xQ8).1Dic3 = Q8:Dic9φ: Dic3/C2S3 ⊆ Out C3xQ8288(C3xQ8).1Dic3288,69
(C3xQ8).2Dic3 = C12.9S4φ: Dic3/C2S3 ⊆ Out C3xQ8724(C3xQ8).2Dic3288,70
(C3xQ8).3Dic3 = C3:U2(F3)φ: Dic3/C2S3 ⊆ Out C3xQ8724(C3xQ8).3Dic3288,404
(C3xQ8).4Dic3 = C3xU2(F3)φ: Dic3/C2S3 ⊆ Out C3xQ8722(C3xQ8).4Dic3288,400
(C3xQ8).5Dic3 = Q8:2Dic9φ: Dic3/C6C2 ⊆ Out C3xQ8288(C3xQ8).5Dic3288,43
(C3xQ8).6Dic3 = Q8:3Dic9φ: Dic3/C6C2 ⊆ Out C3xQ8724(C3xQ8).6Dic3288,44
(C3xQ8).7Dic3 = Q8xDic9φ: Dic3/C6C2 ⊆ Out C3xQ8288(C3xQ8).7Dic3288,155
(C3xQ8).8Dic3 = D4.Dic9φ: Dic3/C6C2 ⊆ Out C3xQ81444(C3xQ8).8Dic3288,158
(C3xQ8).9Dic3 = D4.(C3:Dic3)φ: Dic3/C6C2 ⊆ Out C3xQ8144(C3xQ8).9Dic3288,805
(C3xQ8).10Dic3 = C3xD4.Dic3φ: trivial image484(C3xQ8).10Dic3288,719

׿
x
:
Z
F
o
wr
Q
<