Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=Dic3

Direct product G=N×Q with N=C3×Q8 and Q=Dic3
dρLabelID
C3×Q8×Dic396C3xQ8xDic3288,716

Semidirect products G=N:Q with N=C3×Q8 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1Dic3 = C6.GL2(𝔽3)φ: Dic3/C2S3 ⊆ Out C3×Q896(C3xQ8):1Dic3288,403
(C3×Q8)⋊2Dic3 = C3×Q8⋊Dic3φ: Dic3/C2S3 ⊆ Out C3×Q896(C3xQ8):2Dic3288,399
(C3×Q8)⋊3Dic3 = C62.117D4φ: Dic3/C6C2 ⊆ Out C3×Q8288(C3xQ8):3Dic3288,310
(C3×Q8)⋊4Dic3 = C62.39D4φ: Dic3/C6C2 ⊆ Out C3×Q872(C3xQ8):4Dic3288,312
(C3×Q8)⋊5Dic3 = Q8×C3⋊Dic3φ: Dic3/C6C2 ⊆ Out C3×Q8288(C3xQ8):5Dic3288,802
(C3×Q8)⋊6Dic3 = C3×Q82Dic3φ: Dic3/C6C2 ⊆ Out C3×Q896(C3xQ8):6Dic3288,269
(C3×Q8)⋊7Dic3 = C3×Q83Dic3φ: Dic3/C6C2 ⊆ Out C3×Q8484(C3xQ8):7Dic3288,271

Non-split extensions G=N.Q with N=C3×Q8 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3×Q8).1Dic3 = Q8⋊Dic9φ: Dic3/C2S3 ⊆ Out C3×Q8288(C3xQ8).1Dic3288,69
(C3×Q8).2Dic3 = C12.9S4φ: Dic3/C2S3 ⊆ Out C3×Q8724(C3xQ8).2Dic3288,70
(C3×Q8).3Dic3 = C3⋊U2(𝔽3)φ: Dic3/C2S3 ⊆ Out C3×Q8724(C3xQ8).3Dic3288,404
(C3×Q8).4Dic3 = C3×U2(𝔽3)φ: Dic3/C2S3 ⊆ Out C3×Q8722(C3xQ8).4Dic3288,400
(C3×Q8).5Dic3 = Q82Dic9φ: Dic3/C6C2 ⊆ Out C3×Q8288(C3xQ8).5Dic3288,43
(C3×Q8).6Dic3 = Q83Dic9φ: Dic3/C6C2 ⊆ Out C3×Q8724(C3xQ8).6Dic3288,44
(C3×Q8).7Dic3 = Q8×Dic9φ: Dic3/C6C2 ⊆ Out C3×Q8288(C3xQ8).7Dic3288,155
(C3×Q8).8Dic3 = D4.Dic9φ: Dic3/C6C2 ⊆ Out C3×Q81444(C3xQ8).8Dic3288,158
(C3×Q8).9Dic3 = D4.(C3⋊Dic3)φ: Dic3/C6C2 ⊆ Out C3×Q8144(C3xQ8).9Dic3288,805
(C3×Q8).10Dic3 = C3×D4.Dic3φ: trivial image484(C3xQ8).10Dic3288,719

׿
×
𝔽