Copied to
clipboard

G = C12.9S4order 288 = 25·32

9th non-split extension by C12 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C12.9S4, Q8.Dic9, C3.U2(𝔽3), Q8⋊C92C4, C4○D4.1D9, C6.3(A4⋊C4), C4.5(C3.S4), (C3×Q8).2Dic3, Q8.C18.2C2, C2.3(C6.S4), (C3×C4○D4).1S3, SmallGroup(288,70)

Series: Derived Chief Lower central Upper central

C1C2Q8Q8⋊C9 — C12.9S4
C1C2Q8C3×Q8Q8⋊C9Q8.C18 — C12.9S4
Q8⋊C9 — C12.9S4
C1C4

Generators and relations for C12.9S4
 G = < a,b,c,d,e | a12=1, b2=c2=a6, d3=a4, e2=a9, ab=ba, ac=ca, ad=da, eae-1=a5, cbc-1=a6b, dbd-1=a6bc, ebe-1=bc, dcd-1=b, ece-1=a6c, ede-1=a8d2 >

6C2
3C4
3C22
18C4
18C4
6C6
4C9
3C2×C4
3D4
18C2×C4
18C8
3C12
3C2×C6
6Dic3
6Dic3
4C18
9C42
9M4(2)
3C2×C12
3C3×D4
6C3⋊C8
6C2×Dic3
4C36
9C4≀C2
3C4.Dic3
3C4×Dic3
4C9⋊C8
3Q83Dic3

Character table of C12.9S4

 class 12A2B34A4B4C4D4E4F4G6A6B8A8B9A9B9C12A12B12C18A18B18C36A36B36C36D36E36F
 size 11621161818181821236368882212888888888
ρ1111111111111111111111111111111    trivial
ρ21111111-1-1-1-111-1-1111111111111111    linear of order 2
ρ311-11-1-11i-ii-i1-1i-i111-1-11111-1-1-1-1-1-1    linear of order 4
ρ411-11-1-11-ii-ii1-1-ii111-1-11111-1-1-1-1-1-1    linear of order 4
ρ5222222200002200-1-1-1222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ6222-12220000-1-100ζ9594ζ9792ζ989-1-1-1ζ9594ζ9792ζ989ζ989ζ989ζ9792ζ9792ζ9594ζ9594    orthogonal lifted from D9
ρ7222-12220000-1-100ζ9792ζ989ζ9594-1-1-1ζ9792ζ989ζ9594ζ9594ζ9594ζ989ζ989ζ9792ζ9792    orthogonal lifted from D9
ρ8222-12220000-1-100ζ989ζ9594ζ9792-1-1-1ζ989ζ9594ζ9792ζ9792ζ9792ζ9594ζ9594ζ989ζ989    orthogonal lifted from D9
ρ922-22-2-2200002-200-1-1-1-2-22-1-1-1111111    symplectic lifted from Dic3, Schur index 2
ρ1022-2-1-2-220000-1100ζ9594ζ9792ζ98911-1ζ9594ζ9792ζ9899899899792979295949594    symplectic lifted from Dic9, Schur index 2
ρ1122-2-1-2-220000-1100ζ989ζ9594ζ979211-1ζ989ζ9594ζ97929792979295949594989989    symplectic lifted from Dic9, Schur index 2
ρ1222-2-1-2-220000-1100ζ9792ζ989ζ959411-1ζ9792ζ989ζ95949594959498998997929792    symplectic lifted from Dic9, Schur index 2
ρ132-2022i-2i0-1-i-1+i1+i1-i-2000-1-1-12i-2i0111-ii-ii-ii    complex lifted from U2(𝔽3)
ρ142-202-2i2i01-i1+i-1+i-1-i-2000-1-1-1-2i2i0111i-ii-ii-i    complex lifted from U2(𝔽3)
ρ152-2022i-2i01+i1-i-1-i-1+i-2000-1-1-12i-2i0111-ii-ii-ii    complex lifted from U2(𝔽3)
ρ162-202-2i2i0-1+i-1-i1-i1+i-2000-1-1-1-2i2i0111i-ii-ii-i    complex lifted from U2(𝔽3)
ρ1733-1333-1-1-1-1-13-11100033-1000000000    orthogonal lifted from S4
ρ1833-1333-111113-1-1-100033-1000000000    orthogonal lifted from S4
ρ193313-3-3-1i-ii-i31-ii000-3-3-1000000000    complex lifted from A4⋊C4
ρ203313-3-3-1-ii-ii31i-i000-3-3-1000000000    complex lifted from A4⋊C4
ρ214-4044i-4i00000-40001114i-4i0-1-1-1i-ii-ii-i    complex lifted from U2(𝔽3)
ρ224-404-4i4i00000-4000111-4i4i0-1-1-1-ii-ii-ii    complex lifted from U2(𝔽3)
ρ234-40-2-4i4i000002000979298995942i-2i0ζ9792ζ989ζ9594ζ4ζ954ζ94ζ43ζ9543ζ94ζ4ζ984ζ9ζ43ζ9843ζ9ζ4ζ974ζ92ζ43ζ9743ζ92    complex faithful
ρ244-40-24i-4i00000200095949792989-2i2i0ζ9594ζ9792ζ989ζ43ζ9843ζ9ζ4ζ984ζ9ζ43ζ9743ζ92ζ4ζ974ζ92ζ43ζ9543ζ94ζ4ζ954ζ94    complex faithful
ρ254-40-2-4i4i000002000959497929892i-2i0ζ9594ζ9792ζ989ζ4ζ984ζ9ζ43ζ9843ζ9ζ4ζ974ζ92ζ43ζ9743ζ92ζ4ζ954ζ94ζ43ζ9543ζ94    complex faithful
ρ264-40-2-4i4i000002000989959497922i-2i0ζ989ζ9594ζ9792ζ4ζ974ζ92ζ43ζ9743ζ92ζ4ζ954ζ94ζ43ζ9543ζ94ζ4ζ984ζ9ζ43ζ9843ζ9    complex faithful
ρ274-40-24i-4i00000200097929899594-2i2i0ζ9792ζ989ζ9594ζ43ζ9543ζ94ζ4ζ954ζ94ζ43ζ9843ζ9ζ4ζ984ζ9ζ43ζ9743ζ92ζ4ζ974ζ92    complex faithful
ρ284-40-24i-4i00000200098995949792-2i2i0ζ989ζ9594ζ9792ζ43ζ9743ζ92ζ4ζ974ζ92ζ43ζ9543ζ94ζ4ζ954ζ94ζ43ζ9843ζ9ζ4ζ984ζ9    complex faithful
ρ2966-2-366-20000-3100000-3-31000000000    orthogonal lifted from C3.S4
ρ30662-3-6-6-20000-3-100000331000000000    symplectic lifted from C6.S4, Schur index 2

Smallest permutation representation of C12.9S4
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 19 7 13)(2 20 8 14)(3 21 9 15)(4 22 10 16)(5 23 11 17)(6 24 12 18)(25 28 31 34)(26 29 32 35)(27 30 33 36)(37 72 43 66)(38 61 44 67)(39 62 45 68)(40 63 46 69)(41 64 47 70)(42 65 48 71)(49 58 55 52)(50 59 56 53)(51 60 57 54)
(1 4 7 10)(2 5 8 11)(3 6 9 12)(13 22 19 16)(14 23 20 17)(15 24 21 18)(25 50 31 56)(26 51 32 57)(27 52 33 58)(28 53 34 59)(29 54 35 60)(30 55 36 49)(37 63 43 69)(38 64 44 70)(39 65 45 71)(40 66 46 72)(41 67 47 61)(42 68 48 62)
(1 67 33 5 71 25 9 63 29)(2 68 34 6 72 26 10 64 30)(3 69 35 7 61 27 11 65 31)(4 70 36 8 62 28 12 66 32)(13 41 49 17 45 53 21 37 57)(14 42 50 18 46 54 22 38 58)(15 43 51 19 47 55 23 39 59)(16 44 52 20 48 56 24 40 60)
(1 19 10 16 7 13 4 22)(2 24 11 21 8 18 5 15)(3 17 12 14 9 23 6 20)(25 39 34 48 31 45 28 42)(26 44 35 41 32 38 29 47)(27 37 36 46 33 43 30 40)(49 66 58 63 55 72 52 69)(50 71 59 68 56 65 53 62)(51 64 60 61 57 70 54 67)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18)(25,28,31,34)(26,29,32,35)(27,30,33,36)(37,72,43,66)(38,61,44,67)(39,62,45,68)(40,63,46,69)(41,64,47,70)(42,65,48,71)(49,58,55,52)(50,59,56,53)(51,60,57,54), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,50,31,56)(26,51,32,57)(27,52,33,58)(28,53,34,59)(29,54,35,60)(30,55,36,49)(37,63,43,69)(38,64,44,70)(39,65,45,71)(40,66,46,72)(41,67,47,61)(42,68,48,62), (1,67,33,5,71,25,9,63,29)(2,68,34,6,72,26,10,64,30)(3,69,35,7,61,27,11,65,31)(4,70,36,8,62,28,12,66,32)(13,41,49,17,45,53,21,37,57)(14,42,50,18,46,54,22,38,58)(15,43,51,19,47,55,23,39,59)(16,44,52,20,48,56,24,40,60), (1,19,10,16,7,13,4,22)(2,24,11,21,8,18,5,15)(3,17,12,14,9,23,6,20)(25,39,34,48,31,45,28,42)(26,44,35,41,32,38,29,47)(27,37,36,46,33,43,30,40)(49,66,58,63,55,72,52,69)(50,71,59,68,56,65,53,62)(51,64,60,61,57,70,54,67)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18)(25,28,31,34)(26,29,32,35)(27,30,33,36)(37,72,43,66)(38,61,44,67)(39,62,45,68)(40,63,46,69)(41,64,47,70)(42,65,48,71)(49,58,55,52)(50,59,56,53)(51,60,57,54), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,50,31,56)(26,51,32,57)(27,52,33,58)(28,53,34,59)(29,54,35,60)(30,55,36,49)(37,63,43,69)(38,64,44,70)(39,65,45,71)(40,66,46,72)(41,67,47,61)(42,68,48,62), (1,67,33,5,71,25,9,63,29)(2,68,34,6,72,26,10,64,30)(3,69,35,7,61,27,11,65,31)(4,70,36,8,62,28,12,66,32)(13,41,49,17,45,53,21,37,57)(14,42,50,18,46,54,22,38,58)(15,43,51,19,47,55,23,39,59)(16,44,52,20,48,56,24,40,60), (1,19,10,16,7,13,4,22)(2,24,11,21,8,18,5,15)(3,17,12,14,9,23,6,20)(25,39,34,48,31,45,28,42)(26,44,35,41,32,38,29,47)(27,37,36,46,33,43,30,40)(49,66,58,63,55,72,52,69)(50,71,59,68,56,65,53,62)(51,64,60,61,57,70,54,67) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,19,7,13),(2,20,8,14),(3,21,9,15),(4,22,10,16),(5,23,11,17),(6,24,12,18),(25,28,31,34),(26,29,32,35),(27,30,33,36),(37,72,43,66),(38,61,44,67),(39,62,45,68),(40,63,46,69),(41,64,47,70),(42,65,48,71),(49,58,55,52),(50,59,56,53),(51,60,57,54)], [(1,4,7,10),(2,5,8,11),(3,6,9,12),(13,22,19,16),(14,23,20,17),(15,24,21,18),(25,50,31,56),(26,51,32,57),(27,52,33,58),(28,53,34,59),(29,54,35,60),(30,55,36,49),(37,63,43,69),(38,64,44,70),(39,65,45,71),(40,66,46,72),(41,67,47,61),(42,68,48,62)], [(1,67,33,5,71,25,9,63,29),(2,68,34,6,72,26,10,64,30),(3,69,35,7,61,27,11,65,31),(4,70,36,8,62,28,12,66,32),(13,41,49,17,45,53,21,37,57),(14,42,50,18,46,54,22,38,58),(15,43,51,19,47,55,23,39,59),(16,44,52,20,48,56,24,40,60)], [(1,19,10,16,7,13,4,22),(2,24,11,21,8,18,5,15),(3,17,12,14,9,23,6,20),(25,39,34,48,31,45,28,42),(26,44,35,41,32,38,29,47),(27,37,36,46,33,43,30,40),(49,66,58,63,55,72,52,69),(50,71,59,68,56,65,53,62),(51,64,60,61,57,70,54,67)]])

Matrix representation of C12.9S4 in GL4(𝔽73) generated by

27000
02700
0012
003571
,
02700
27000
0010
0001
,
27000
04600
0010
0001
,
595900
601300
00346
003225
,
02700
1000
0010
003572
G:=sub<GL(4,GF(73))| [27,0,0,0,0,27,0,0,0,0,1,35,0,0,2,71],[0,27,0,0,27,0,0,0,0,0,1,0,0,0,0,1],[27,0,0,0,0,46,0,0,0,0,1,0,0,0,0,1],[59,60,0,0,59,13,0,0,0,0,34,32,0,0,6,25],[0,1,0,0,27,0,0,0,0,0,1,35,0,0,0,72] >;

C12.9S4 in GAP, Magma, Sage, TeX

C_{12}._9S_4
% in TeX

G:=Group("C12.9S4");
// GroupNames label

G:=SmallGroup(288,70);
// by ID

G=gap.SmallGroup(288,70);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,14,1016,422,142,675,2524,1908,172,1517,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=1,b^2=c^2=a^6,d^3=a^4,e^2=a^9,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^5,c*b*c^-1=a^6*b,d*b*d^-1=a^6*b*c,e*b*e^-1=b*c,d*c*d^-1=b,e*c*e^-1=a^6*c,e*d*e^-1=a^8*d^2>;
// generators/relations

Export

Subgroup lattice of C12.9S4 in TeX
Character table of C12.9S4 in TeX

׿
×
𝔽