Extensions 1→N→G→Q→1 with N=C3×A4 and Q=C2×C4

Direct product G=N×Q with N=C3×A4 and Q=C2×C4
dρLabelID
A4×C2×C1272A4xC2xC12288,979

Semidirect products G=N:Q with N=C3×A4 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C3×A4)⋊1(C2×C4) = Dic3×S4φ: C2×C4/C2C22 ⊆ Out C3×A4366-(C3xA4):1(C2xC4)288,853
(C3×A4)⋊2(C2×C4) = Dic32S4φ: C2×C4/C2C22 ⊆ Out C3×A4366(C3xA4):2(C2xC4)288,854
(C3×A4)⋊3(C2×C4) = S3×A4⋊C4φ: C2×C4/C2C22 ⊆ Out C3×A4366(C3xA4):3(C2xC4)288,856
(C3×A4)⋊4(C2×C4) = C12×S4φ: C2×C4/C4C2 ⊆ Out C3×A4363(C3xA4):4(C2xC4)288,897
(C3×A4)⋊5(C2×C4) = C4×C3⋊S4φ: C2×C4/C4C2 ⊆ Out C3×A4366(C3xA4):5(C2xC4)288,908
(C3×A4)⋊6(C2×C4) = C4×S3×A4φ: C2×C4/C4C2 ⊆ Out C3×A4366(C3xA4):6(C2xC4)288,919
(C3×A4)⋊7(C2×C4) = C6×A4⋊C4φ: C2×C4/C22C2 ⊆ Out C3×A472(C3xA4):7(C2xC4)288,905
(C3×A4)⋊8(C2×C4) = C2×C6.7S4φ: C2×C4/C22C2 ⊆ Out C3×A472(C3xA4):8(C2xC4)288,916
(C3×A4)⋊9(C2×C4) = C2×Dic3×A4φ: C2×C4/C22C2 ⊆ Out C3×A472(C3xA4):9(C2xC4)288,927


׿
×
𝔽