Copied to
clipboard

G = A4xC2xC12order 288 = 25·32

Direct product of C2xC12 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4xC2xC12, C23.6C62, (C23xC12):C3, C22:(C6xC12), C24.(C3xC6), (C23xC4):C32, (C22xC12):4C6, (C22xC6):4C12, C23:2(C3xC12), C22.7(C6xA4), (C23xC6).7C6, (C22xA4).2C6, C6.20(C22xA4), (C6xA4).23C22, C2.1(A4xC2xC6), (A4xC2xC6).4C2, (C2xC6):6(C2xC12), (C2xA4).6(C2xC6), (C2xC6).28(C2xA4), (C22xC4):2(C3xC6), (C22xC6).39(C2xC6), SmallGroup(288,979)

Series: Derived Chief Lower central Upper central

C1C22 — A4xC2xC12
C1C22C23C22xC6C6xA4A4xC2xC6 — A4xC2xC12
C22 — A4xC2xC12
C1C2xC12

Generators and relations for A4xC2xC12
 G = < a,b,c,d,e | a2=b12=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Subgroups: 396 in 164 conjugacy classes, 64 normal (20 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, C6, C6, C6, C2xC4, C2xC4, C23, C23, C23, C32, C12, C12, A4, C2xC6, C2xC6, C22xC4, C22xC4, C24, C3xC6, C2xC12, C2xC12, C2xA4, C22xC6, C22xC6, C22xC6, C23xC4, C3xC12, C3xA4, C62, C4xA4, C22xC12, C22xC12, C22xA4, C23xC6, C6xC12, C6xA4, C6xA4, C2xC4xA4, C23xC12, C12xA4, A4xC2xC6, A4xC2xC12
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, C32, C12, A4, C2xC6, C3xC6, C2xC12, C2xA4, C3xC12, C3xA4, C62, C4xA4, C22xA4, C6xC12, C6xA4, C2xC4xA4, C12xA4, A4xC2xC6, A4xC2xC12

Smallest permutation representation of A4xC2xC12
On 72 points
Generators in S72
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 37)(10 38)(11 39)(12 40)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 49)(24 50)(25 66)(26 67)(27 68)(28 69)(29 70)(30 71)(31 72)(32 61)(33 62)(34 63)(35 64)(36 65)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(13 57)(14 58)(15 59)(16 60)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(25 72)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)(36 71)
(1 47)(2 48)(3 37)(4 38)(5 39)(6 40)(7 41)(8 42)(9 43)(10 44)(11 45)(12 46)(13 57)(14 58)(15 59)(16 60)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)
(1 72 17)(2 61 18)(3 62 19)(4 63 20)(5 64 21)(6 65 22)(7 66 23)(8 67 24)(9 68 13)(10 69 14)(11 70 15)(12 71 16)(25 49 47)(26 50 48)(27 51 37)(28 52 38)(29 53 39)(30 54 40)(31 55 41)(32 56 42)(33 57 43)(34 58 44)(35 59 45)(36 60 46)

G:=sub<Sym(72)| (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,37)(10,38)(11,39)(12,40)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,49)(24,50)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,61)(33,62)(34,63)(35,64)(36,65), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (13,57)(14,58)(15,59)(16,60)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,72)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71), (1,47)(2,48)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,57)(14,58)(15,59)(16,60)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56), (1,72,17)(2,61,18)(3,62,19)(4,63,20)(5,64,21)(6,65,22)(7,66,23)(8,67,24)(9,68,13)(10,69,14)(11,70,15)(12,71,16)(25,49,47)(26,50,48)(27,51,37)(28,52,38)(29,53,39)(30,54,40)(31,55,41)(32,56,42)(33,57,43)(34,58,44)(35,59,45)(36,60,46)>;

G:=Group( (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,37)(10,38)(11,39)(12,40)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,49)(24,50)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,61)(33,62)(34,63)(35,64)(36,65), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (13,57)(14,58)(15,59)(16,60)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,72)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71), (1,47)(2,48)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,57)(14,58)(15,59)(16,60)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56), (1,72,17)(2,61,18)(3,62,19)(4,63,20)(5,64,21)(6,65,22)(7,66,23)(8,67,24)(9,68,13)(10,69,14)(11,70,15)(12,71,16)(25,49,47)(26,50,48)(27,51,37)(28,52,38)(29,53,39)(30,54,40)(31,55,41)(32,56,42)(33,57,43)(34,58,44)(35,59,45)(36,60,46) );

G=PermutationGroup([[(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,37),(10,38),(11,39),(12,40),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,49),(24,50),(25,66),(26,67),(27,68),(28,69),(29,70),(30,71),(31,72),(32,61),(33,62),(34,63),(35,64),(36,65)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(13,57),(14,58),(15,59),(16,60),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(25,72),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70),(36,71)], [(1,47),(2,48),(3,37),(4,38),(5,39),(6,40),(7,41),(8,42),(9,43),(10,44),(11,45),(12,46),(13,57),(14,58),(15,59),(16,60),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56)], [(1,72,17),(2,61,18),(3,62,19),(4,63,20),(5,64,21),(6,65,22),(7,66,23),(8,67,24),(9,68,13),(10,69,14),(11,70,15),(12,71,16),(25,49,47),(26,50,48),(27,51,37),(28,52,38),(29,53,39),(30,54,40),(31,55,41),(32,56,42),(33,57,43),(34,58,44),(35,59,45),(36,60,46)]])

96 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C···3H4A4B4C4D4E4F4G4H6A···6F6G···6N6O···6AF12A···12H12I···12P12Q···12AN
order12222222333···3444444446···66···66···612···1212···1212···12
size11113333114···4111133331···13···34···41···13···34···4

96 irreducible representations

dim11111111111133333333
type++++++
imageC1C2C2C3C3C4C6C6C6C6C12C12A4C2xA4C2xA4C3xA4C4xA4C6xA4C6xA4C12xA4
kernelA4xC2xC12C12xA4A4xC2xC6C2xC4xA4C23xC12C6xA4C4xA4C22xC12C22xA4C23xC6C2xA4C22xC6C2xC12C12C2xC6C2xC4C6C4C22C2
# reps1216241246224812124428

Matrix representation of A4xC2xC12 in GL4(F13) generated by

1000
01200
00120
00012
,
11000
0300
0030
0003
,
1000
0100
00120
04012
,
1000
01200
00120
0931
,
1000
0030
01247
0009
G:=sub<GL(4,GF(13))| [1,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[11,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[1,0,0,0,0,1,0,4,0,0,12,0,0,0,0,12],[1,0,0,0,0,12,0,9,0,0,12,3,0,0,0,1],[1,0,0,0,0,0,12,0,0,3,4,0,0,0,7,9] >;

A4xC2xC12 in GAP, Magma, Sage, TeX

A_4\times C_2\times C_{12}
% in TeX

G:=Group("A4xC2xC12");
// GroupNames label

G:=SmallGroup(288,979);
// by ID

G=gap.SmallGroup(288,979);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,2,260,1531,2666]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^12=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<