extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6)⋊SD16 = C2×AΓL1(𝔽9) | φ: SD16/C1 → SD16 ⊆ Aut C3×C6 | 18 | 8+ | (C3xC6):SD16 | 288,1027 |
(C3×C6)⋊2SD16 = C2×C32⋊2SD16 | φ: SD16/C2 → D4 ⊆ Aut C3×C6 | 48 | | (C3xC6):2SD16 | 288,886 |
(C3×C6)⋊3SD16 = C2×Dic6⋊S3 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6):3SD16 | 288,474 |
(C3×C6)⋊4SD16 = C2×D12.S3 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6):4SD16 | 288,476 |
(C3×C6)⋊5SD16 = C2×C32⋊5SD16 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6):5SD16 | 288,480 |
(C3×C6)⋊6SD16 = C6×C24⋊C2 | φ: SD16/C8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6):6SD16 | 288,673 |
(C3×C6)⋊7SD16 = C2×C24⋊2S3 | φ: SD16/C8 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6):7SD16 | 288,759 |
(C3×C6)⋊8SD16 = C6×D4.S3 | φ: SD16/D4 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6):8SD16 | 288,704 |
(C3×C6)⋊9SD16 = C2×C32⋊9SD16 | φ: SD16/D4 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6):9SD16 | 288,790 |
(C3×C6)⋊10SD16 = C6×Q8⋊2S3 | φ: SD16/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6):10SD16 | 288,712 |
(C3×C6)⋊11SD16 = C2×C32⋊11SD16 | φ: SD16/Q8 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6):11SD16 | 288,798 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1SD16 = C2.AΓL1(𝔽9) | φ: SD16/C1 → SD16 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).1SD16 | 288,841 |
(C3×C6).2SD16 = PSU3(𝔽2)⋊C4 | φ: SD16/C1 → SD16 ⊆ Aut C3×C6 | 36 | 8 | (C3xC6).2SD16 | 288,842 |
(C3×C6).3SD16 = F9⋊C4 | φ: SD16/C1 → SD16 ⊆ Aut C3×C6 | 36 | 8 | (C3xC6).3SD16 | 288,843 |
(C3×C6).4SD16 = C62.3D4 | φ: SD16/C2 → D4 ⊆ Aut C3×C6 | 48 | | (C3xC6).4SD16 | 288,387 |
(C3×C6).5SD16 = C62.4D4 | φ: SD16/C2 → D4 ⊆ Aut C3×C6 | 96 | | (C3xC6).5SD16 | 288,388 |
(C3×C6).6SD16 = C62.6D4 | φ: SD16/C2 → D4 ⊆ Aut C3×C6 | 96 | | (C3xC6).6SD16 | 288,390 |
(C3×C6).7SD16 = D12⋊3Dic3 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).7SD16 | 288,210 |
(C3×C6).8SD16 = C6.16D24 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).8SD16 | 288,211 |
(C3×C6).9SD16 = C6.17D24 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).9SD16 | 288,212 |
(C3×C6).10SD16 = Dic6⋊Dic3 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).10SD16 | 288,213 |
(C3×C6).11SD16 = C6.Dic12 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).11SD16 | 288,214 |
(C3×C6).12SD16 = C12.73D12 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).12SD16 | 288,215 |
(C3×C6).13SD16 = C12.Dic6 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).13SD16 | 288,221 |
(C3×C6).14SD16 = C12.6Dic6 | φ: SD16/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).14SD16 | 288,222 |
(C3×C6).15SD16 = C3×C2.Dic12 | φ: SD16/C8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).15SD16 | 288,250 |
(C3×C6).16SD16 = C3×C8⋊Dic3 | φ: SD16/C8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).16SD16 | 288,251 |
(C3×C6).17SD16 = C3×C2.D24 | φ: SD16/C8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).17SD16 | 288,255 |
(C3×C6).18SD16 = C6.4Dic12 | φ: SD16/C8 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).18SD16 | 288,291 |
(C3×C6).19SD16 = C24⋊2Dic3 | φ: SD16/C8 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).19SD16 | 288,292 |
(C3×C6).20SD16 = C62.84D4 | φ: SD16/C8 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).20SD16 | 288,296 |
(C3×C6).21SD16 = C3×C6.SD16 | φ: SD16/D4 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).21SD16 | 288,244 |
(C3×C6).22SD16 = C3×D4⋊Dic3 | φ: SD16/D4 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).22SD16 | 288,266 |
(C3×C6).23SD16 = C62.114D4 | φ: SD16/D4 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).23SD16 | 288,285 |
(C3×C6).24SD16 = C62.116D4 | φ: SD16/D4 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).24SD16 | 288,307 |
(C3×C6).25SD16 = C3×C12.Q8 | φ: SD16/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).25SD16 | 288,242 |
(C3×C6).26SD16 = C3×C6.D8 | φ: SD16/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).26SD16 | 288,243 |
(C3×C6).27SD16 = C3×Q8⋊2Dic3 | φ: SD16/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).27SD16 | 288,269 |
(C3×C6).28SD16 = C12.10Dic6 | φ: SD16/Q8 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).28SD16 | 288,283 |
(C3×C6).29SD16 = C62.113D4 | φ: SD16/Q8 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).29SD16 | 288,284 |
(C3×C6).30SD16 = C62.117D4 | φ: SD16/Q8 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).30SD16 | 288,310 |
(C3×C6).31SD16 = C32×D4⋊C4 | central extension (φ=1) | 144 | | (C3xC6).31SD16 | 288,320 |
(C3×C6).32SD16 = C32×Q8⋊C4 | central extension (φ=1) | 288 | | (C3xC6).32SD16 | 288,321 |
(C3×C6).33SD16 = C32×C4.Q8 | central extension (φ=1) | 288 | | (C3xC6).33SD16 | 288,324 |