Copied to
clipboard

G = F9⋊C4order 288 = 25·32

The semidirect product of F9 and C4 acting via C4/C2=C2

non-abelian, soluble, monomial

Aliases: F9⋊C4, C2.3AΓL1(𝔽9), C32⋊C4.Q8, C3⋊S3.SD16, C32⋊(C4.Q8), (C2×F9).3C2, (C3×C6).3SD16, C2.PSU3(𝔽2).1C2, C3⋊S3.(C4⋊C4), (C2×C3⋊S3).3D4, C32⋊C4.3(C2×C4), C3⋊S3.Q8.3C2, (C2×C32⋊C4).3C22, SmallGroup(288,843)

Series: Derived Chief Lower central Upper central

C1C32C32⋊C4 — F9⋊C4
C1C32C3⋊S3C32⋊C4C2×C32⋊C4C2×F9 — F9⋊C4
C32C3⋊S3C32⋊C4 — F9⋊C4
C1C2

Generators and relations for F9⋊C4
 G = < a,b,c,d | a3=b3=c8=d4=1, cac-1=ab=ba, dad-1=a-1b, cbc-1=a, bd=db, dcd-1=c3 >

9C2
9C2
4C3
9C4
9C22
9C4
12C4
36C4
4C6
12S3
12S3
9C8
9C8
9C2×C4
18C2×C4
18C2×C4
4Dic3
12C12
12D6
9C4⋊C4
9C2×C8
9C4⋊C4
12C4×S3
4C32⋊C4
4C3×Dic3
9C4.Q8
2C6.D6
2C2×C32⋊C4

Character table of F9⋊C4

 class 12A2B2C34A4B4C4D4E4F68A8B8C8D12A12B
 size 119981212181836368181818182424
ρ1111111111111111111    trivial
ρ211111-1-111-1-111111-1-1    linear of order 2
ρ311111-1-111111-1-1-1-1-1-1    linear of order 2
ρ4111111111-1-11-1-1-1-111    linear of order 2
ρ51-1-111i-i1-1-ii-1-11-11i-i    linear of order 4
ρ61-1-111-ii1-1i-i-1-11-11-ii    linear of order 4
ρ71-1-111-ii1-1-ii-11-11-1-ii    linear of order 4
ρ81-1-111i-i1-1i-i-11-11-1i-i    linear of order 4
ρ92222200-2-2002000000    orthogonal lifted from D4
ρ102-2-22200-2200-2000000    symplectic lifted from Q8, Schur index 2
ρ112-22-22000000-2-2-2--2--200    complex lifted from SD16
ρ1222-2-220000002--2-2-2--200    complex lifted from SD16
ρ1322-2-220000002-2--2--2-200    complex lifted from SD16
ρ142-22-22000000-2--2--2-2-200    complex lifted from SD16
ρ158800-1-2-20000-1000011    orthogonal lifted from AΓL1(𝔽9)
ρ168800-1220000-10000-1-1    orthogonal lifted from AΓL1(𝔽9)
ρ178-800-12i-2i000010000-ii    complex faithful
ρ188-800-1-2i2i000010000i-i    complex faithful

Smallest permutation representation of F9⋊C4
On 36 points
Generators in S36
(1 15 19)(2 31 35)(3 22 26)(4 12 8)(5 11 10)(6 7 9)(13 16 14)(17 18 20)(21 28 23)(24 25 27)(29 32 30)(33 34 36)
(1 16 20)(2 32 36)(3 23 27)(4 5 9)(6 12 11)(7 8 10)(13 18 19)(14 17 15)(21 24 22)(25 26 28)(29 34 35)(30 33 31)
(5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36)
(1 3 4 2)(5 32 16 23)(6 35 17 26)(7 30 18 21)(8 33 19 24)(9 36 20 27)(10 31 13 22)(11 34 14 25)(12 29 15 28)

G:=sub<Sym(36)| (1,15,19)(2,31,35)(3,22,26)(4,12,8)(5,11,10)(6,7,9)(13,16,14)(17,18,20)(21,28,23)(24,25,27)(29,32,30)(33,34,36), (1,16,20)(2,32,36)(3,23,27)(4,5,9)(6,12,11)(7,8,10)(13,18,19)(14,17,15)(21,24,22)(25,26,28)(29,34,35)(30,33,31), (5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36), (1,3,4,2)(5,32,16,23)(6,35,17,26)(7,30,18,21)(8,33,19,24)(9,36,20,27)(10,31,13,22)(11,34,14,25)(12,29,15,28)>;

G:=Group( (1,15,19)(2,31,35)(3,22,26)(4,12,8)(5,11,10)(6,7,9)(13,16,14)(17,18,20)(21,28,23)(24,25,27)(29,32,30)(33,34,36), (1,16,20)(2,32,36)(3,23,27)(4,5,9)(6,12,11)(7,8,10)(13,18,19)(14,17,15)(21,24,22)(25,26,28)(29,34,35)(30,33,31), (5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36), (1,3,4,2)(5,32,16,23)(6,35,17,26)(7,30,18,21)(8,33,19,24)(9,36,20,27)(10,31,13,22)(11,34,14,25)(12,29,15,28) );

G=PermutationGroup([[(1,15,19),(2,31,35),(3,22,26),(4,12,8),(5,11,10),(6,7,9),(13,16,14),(17,18,20),(21,28,23),(24,25,27),(29,32,30),(33,34,36)], [(1,16,20),(2,32,36),(3,23,27),(4,5,9),(6,12,11),(7,8,10),(13,18,19),(14,17,15),(21,24,22),(25,26,28),(29,34,35),(30,33,31)], [(5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36)], [(1,3,4,2),(5,32,16,23),(6,35,17,26),(7,30,18,21),(8,33,19,24),(9,36,20,27),(10,31,13,22),(11,34,14,25),(12,29,15,28)]])

Matrix representation of F9⋊C4 in GL8(𝔽73)

00100000
00010000
00000001
00000100
00000010
01000000
7272727272727272
10000000
,
00000100
00000010
01000000
7272727272727272
10000000
00001000
00100000
00010000
,
00100000
00000100
00010000
00000010
10000000
00000001
01000000
00001000
,
027000000
270000000
000027000
000270000
002700000
000000270
000002700
000000027

G:=sub<GL(8,GF(73))| [0,0,0,0,0,0,72,1,0,0,0,0,0,1,72,0,1,0,0,0,0,0,72,0,0,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,72,0,0,0,0,0,1,0,72,0,0,0,1,0,0,0,72,0],[0,0,0,72,1,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,1,0,0,0,0,72,0,0,0,1,0,0,0,72,0,1,0,0,1,0,0,72,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,72,0,0,0,0],[0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0],[0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,27] >;

F9⋊C4 in GAP, Magma, Sage, TeX

F_9\rtimes C_4
% in TeX

G:=Group("F9:C4");
// GroupNames label

G:=SmallGroup(288,843);
// by ID

G=gap.SmallGroup(288,843);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,309,64,219,100,4037,4716,2371,201,10982,4717,3156,622]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=d^4=1,c*a*c^-1=a*b=b*a,d*a*d^-1=a^-1*b,c*b*c^-1=a,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of F9⋊C4 in TeX
Character table of F9⋊C4 in TeX

׿
×
𝔽