Extensions 1→N→G→Q→1 with N=D6 and Q=C3×D4

Direct product G=N×Q with N=D6 and Q=C3×D4
dρLabelID
S3×C6×D448S3xC6xD4288,992

Semidirect products G=N:Q with N=D6 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
D61(C3×D4) = C3×Dic3⋊D4φ: C3×D4/C12C2 ⊆ Out D648D6:1(C3xD4)288,655
D62(C3×D4) = C3×C12⋊D4φ: C3×D4/C12C2 ⊆ Out D696D6:2(C3xD4)288,666
D63(C3×D4) = C3×D63D4φ: C3×D4/C12C2 ⊆ Out D648D6:3(C3xD4)288,709
D64(C3×D4) = C3×D6⋊D4φ: C3×D4/C2×C6C2 ⊆ Out D648D6:4(C3xD4)288,653
D65(C3×D4) = C3×C232D6φ: C3×D4/C2×C6C2 ⊆ Out D648D6:5(C3xD4)288,708

Non-split extensions G=N.Q with N=D6 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
D6.1(C3×D4) = C3×D83S3φ: C3×D4/C12C2 ⊆ Out D6484D6.1(C3xD4)288,683
D6.2(C3×D4) = C3×Q8.7D6φ: C3×D4/C12C2 ⊆ Out D6484D6.2(C3xD4)288,687
D6.3(C3×D4) = C3×D24⋊C2φ: C3×D4/C12C2 ⊆ Out D6964D6.3(C3xD4)288,690
D6.4(C3×D4) = C3×C23.9D6φ: C3×D4/C2×C6C2 ⊆ Out D648D6.4(C3xD4)288,654
D6.5(C3×D4) = C3×D6.D4φ: C3×D4/C2×C6C2 ⊆ Out D696D6.5(C3xD4)288,665
D6.6(C3×D4) = C3×D8⋊S3φ: C3×D4/C2×C6C2 ⊆ Out D6484D6.6(C3xD4)288,682
D6.7(C3×D4) = C3×Q83D6φ: C3×D4/C2×C6C2 ⊆ Out D6484D6.7(C3xD4)288,685
D6.8(C3×D4) = C3×D4.D6φ: C3×D4/C2×C6C2 ⊆ Out D6484D6.8(C3xD4)288,686
D6.9(C3×D4) = C3×Q16⋊S3φ: C3×D4/C2×C6C2 ⊆ Out D6964D6.9(C3xD4)288,689
D6.10(C3×D4) = C3×S3×C22⋊C4φ: trivial image48D6.10(C3xD4)288,651
D6.11(C3×D4) = C3×S3×C4⋊C4φ: trivial image96D6.11(C3xD4)288,662
D6.12(C3×D4) = C3×S3×D8φ: trivial image484D6.12(C3xD4)288,681
D6.13(C3×D4) = C3×S3×SD16φ: trivial image484D6.13(C3xD4)288,684
D6.14(C3×D4) = C3×S3×Q16φ: trivial image964D6.14(C3xD4)288,688

׿
×
𝔽