Copied to
clipboard

G = C3xD6:3D4order 288 = 25·32

Direct product of C3 and D6:3D4

direct product, metabelian, supersoluble, monomial

Aliases: C3xD6:3D4, C62.203C23, D6:3(C3xD4), (C6xD4):3C6, C12:2(C3xD4), (C6xD4):11S3, (S3xC6):13D4, (C3xC12):10D4, C6.50(C6xD4), C4:Dic3:14C6, C6.199(S3xD4), C12:11(C3:D4), (C2xC12).327D6, C23.13(S3xC6), (C22xC6).32D6, C6.D4:11C6, C32:22(C4:D4), (C6xC12).122C22, (C2xC62).57C22, C6.125(D4:2S3), (C6xDic3).101C22, (S3xC2xC4):2C6, (D4xC3xC6):3C2, (S3xC2xC12):6C2, C4:2(C3xC3:D4), C2.26(C3xS3xD4), (C2xD4):4(C3xS3), (C2xC3:D4):5C6, C3:4(C3xC4:D4), (C6xC3:D4):19C2, (C2xC4).51(S3xC6), C6.31(C3xC4oD4), C2.14(C6xC3:D4), C22.60(S3xC2xC6), (C2xC12).33(C2xC6), (C3xC4:Dic3):23C2, (C3xC6).260(C2xD4), C6.151(C2xC3:D4), C2.17(C3xD4:2S3), (S3xC2xC6).100C22, (C2xC6).58(C22xC6), (C22xC6).31(C2xC6), (C3xC6).139(C4oD4), (C3xC6.D4):27C2, (C22xS3).27(C2xC6), (C2xC6).336(C22xS3), (C2xDic3).12(C2xC6), SmallGroup(288,709)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xD6:3D4
C1C3C6C2xC6C62S3xC2xC6S3xC2xC12 — C3xD6:3D4
C3C2xC6 — C3xD6:3D4
C1C2xC6C6xD4

Generators and relations for C3xD6:3D4
 G = < a,b,c,d,e | a3=b6=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b3c, ede=d-1 >

Subgroups: 522 in 215 conjugacy classes, 70 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C23, C32, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C2xD4, C3xS3, C3xC6, C3xC6, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, C22xC6, C4:D4, C3xDic3, C3xC12, S3xC6, S3xC6, C62, C62, C4:Dic3, C6.D4, C3xC22:C4, C3xC4:C4, S3xC2xC4, C2xC3:D4, C22xC12, C6xD4, C6xD4, S3xC12, C6xDic3, C6xDic3, C3xC3:D4, C6xC12, D4xC32, S3xC2xC6, C2xC62, D6:3D4, C3xC4:D4, C3xC4:Dic3, C3xC6.D4, S3xC2xC12, C6xC3:D4, D4xC3xC6, C3xD6:3D4
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C4oD4, C3xS3, C3:D4, C3xD4, C22xS3, C22xC6, C4:D4, S3xC6, S3xD4, D4:2S3, C2xC3:D4, C6xD4, C3xC4oD4, C3xC3:D4, S3xC2xC6, D6:3D4, C3xC4:D4, C3xS3xD4, C3xD4:2S3, C6xC3:D4, C3xD6:3D4

Smallest permutation representation of C3xD6:3D4
On 48 points
Generators in S48
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 40)(2 39)(3 38)(4 37)(5 42)(6 41)(7 22)(8 21)(9 20)(10 19)(11 24)(12 23)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(25 47)(26 46)(27 45)(28 44)(29 43)(30 48)
(1 20 16 27)(2 21 17 28)(3 22 18 29)(4 23 13 30)(5 24 14 25)(6 19 15 26)(7 31 43 38)(8 32 44 39)(9 33 45 40)(10 34 46 41)(11 35 47 42)(12 36 48 37)
(7 46)(8 47)(9 48)(10 43)(11 44)(12 45)(19 26)(20 27)(21 28)(22 29)(23 30)(24 25)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)

G:=sub<Sym(48)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,42)(6,41)(7,22)(8,21)(9,20)(10,19)(11,24)(12,23)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(25,47)(26,46)(27,45)(28,44)(29,43)(30,48), (1,20,16,27)(2,21,17,28)(3,22,18,29)(4,23,13,30)(5,24,14,25)(6,19,15,26)(7,31,43,38)(8,32,44,39)(9,33,45,40)(10,34,46,41)(11,35,47,42)(12,36,48,37), (7,46)(8,47)(9,48)(10,43)(11,44)(12,45)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)>;

G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,42)(6,41)(7,22)(8,21)(9,20)(10,19)(11,24)(12,23)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(25,47)(26,46)(27,45)(28,44)(29,43)(30,48), (1,20,16,27)(2,21,17,28)(3,22,18,29)(4,23,13,30)(5,24,14,25)(6,19,15,26)(7,31,43,38)(8,32,44,39)(9,33,45,40)(10,34,46,41)(11,35,47,42)(12,36,48,37), (7,46)(8,47)(9,48)(10,43)(11,44)(12,45)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42) );

G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,40),(2,39),(3,38),(4,37),(5,42),(6,41),(7,22),(8,21),(9,20),(10,19),(11,24),(12,23),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(25,47),(26,46),(27,45),(28,44),(29,43),(30,48)], [(1,20,16,27),(2,21,17,28),(3,22,18,29),(4,23,13,30),(5,24,14,25),(6,19,15,26),(7,31,43,38),(8,32,44,39),(9,33,45,40),(10,34,46,41),(11,35,47,42),(12,36,48,37)], [(7,46),(8,47),(9,48),(10,43),(11,44),(12,45),(19,26),(20,27),(21,28),(22,29),(23,30),(24,25),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B4C4D4E4F6A···6F6G···6O6P···6AE6AF6AG6AH6AI12A12B12C12D12E···12J12K12L12M12N12O12P12Q12R
order12222222333334444446···66···66···666661212121212···121212121212121212
size1111446611222226612121···12···24···4666622224···4666612121212

72 irreducible representations

dim111111111111222222222222224444
type++++++++++++-
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D4D6D6C4oD4C3xS3C3:D4C3xD4C3xD4S3xC6S3xC6C3xC4oD4C3xC3:D4S3xD4D4:2S3C3xS3xD4C3xD4:2S3
kernelC3xD6:3D4C3xC4:Dic3C3xC6.D4S3xC2xC12C6xC3:D4D4xC3xC6D6:3D4C4:Dic3C6.D4S3xC2xC4C2xC3:D4C6xD4C6xD4C3xC12S3xC6C2xC12C22xC6C3xC6C2xD4C12C12D6C2xC4C23C6C4C6C6C2C2
# reps112121224242122122244424481122

Matrix representation of C3xD6:3D4 in GL6(F13)

100000
010000
001000
000100
000090
000009
,
100000
010000
0012000
0001200
000030
0000109
,
100000
010000
000800
005000
000045
0000109
,
0120000
100000
0001200
001000
0000120
0000012
,
100000
0120000
001000
0001200
000010
000001

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,3,10,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,8,0,0,0,0,0,0,0,4,10,0,0,0,0,5,9],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C3xD6:3D4 in GAP, Magma, Sage, TeX

C_3\times D_6\rtimes_3D_4
% in TeX

G:=Group("C3xD6:3D4");
// GroupNames label

G:=SmallGroup(288,709);
// by ID

G=gap.SmallGroup(288,709);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,344,590,555,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^6=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^3*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<