extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(Dic3⋊C4) = C12.81D12 | φ: Dic3⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.1(Dic3:C4) | 288,219 |
C6.2(Dic3⋊C4) = C12.15Dic6 | φ: Dic3⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.2(Dic3:C4) | 288,220 |
C6.3(Dic3⋊C4) = C12.Dic6 | φ: Dic3⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.3(Dic3:C4) | 288,221 |
C6.4(Dic3⋊C4) = C12.6Dic6 | φ: Dic3⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.4(Dic3:C4) | 288,222 |
C6.5(Dic3⋊C4) = C6.18D24 | φ: Dic3⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.5(Dic3:C4) | 288,223 |
C6.6(Dic3⋊C4) = C12.8Dic6 | φ: Dic3⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.6(Dic3:C4) | 288,224 |
C6.7(Dic3⋊C4) = C12.82D12 | φ: Dic3⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(Dic3:C4) | 288,225 |
C6.8(Dic3⋊C4) = C62.5Q8 | φ: Dic3⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(Dic3:C4) | 288,226 |
C6.9(Dic3⋊C4) = C62.6Q8 | φ: Dic3⋊C4/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.9(Dic3:C4) | 288,227 |
C6.10(Dic3⋊C4) = C36.Q8 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.10(Dic3:C4) | 288,14 |
C6.11(Dic3⋊C4) = C4.Dic18 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.11(Dic3:C4) | 288,15 |
C6.12(Dic3⋊C4) = Dic9⋊C8 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.12(Dic3:C4) | 288,22 |
C6.13(Dic3⋊C4) = C36.53D4 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | 4 | C6.13(Dic3:C4) | 288,29 |
C6.14(Dic3⋊C4) = C18.C42 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.14(Dic3:C4) | 288,38 |
C6.15(Dic3⋊C4) = C2×Dic9⋊C4 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.15(Dic3:C4) | 288,133 |
C6.16(Dic3⋊C4) = C12.9Dic6 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.16(Dic3:C4) | 288,282 |
C6.17(Dic3⋊C4) = C12.10Dic6 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.17(Dic3:C4) | 288,283 |
C6.18(Dic3⋊C4) = C12.30Dic6 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.18(Dic3:C4) | 288,289 |
C6.19(Dic3⋊C4) = C62.8Q8 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.19(Dic3:C4) | 288,297 |
C6.20(Dic3⋊C4) = C62.15Q8 | φ: Dic3⋊C4/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.20(Dic3:C4) | 288,306 |
C6.21(Dic3⋊C4) = C3×C6.Q16 | central extension (φ=1) | 96 | | C6.21(Dic3:C4) | 288,241 |
C6.22(Dic3⋊C4) = C3×C12.Q8 | central extension (φ=1) | 96 | | C6.22(Dic3:C4) | 288,242 |
C6.23(Dic3⋊C4) = C3×Dic3⋊C8 | central extension (φ=1) | 96 | | C6.23(Dic3:C4) | 288,248 |
C6.24(Dic3⋊C4) = C3×C12.53D4 | central extension (φ=1) | 48 | 4 | C6.24(Dic3:C4) | 288,256 |
C6.25(Dic3⋊C4) = C3×C6.C42 | central extension (φ=1) | 96 | | C6.25(Dic3:C4) | 288,265 |