Extensions 1→N→G→Q→1 with N=C6 and Q=Dic3⋊C4

Direct product G=N×Q with N=C6 and Q=Dic3⋊C4
dρLabelID
C6×Dic3⋊C496C6xDic3:C4288,694

Semidirect products G=N:Q with N=C6 and Q=Dic3⋊C4
extensionφ:Q→Aut NdρLabelID
C61(Dic3⋊C4) = C2×Dic3⋊Dic3φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C696C6:1(Dic3:C4)288,613
C62(Dic3⋊C4) = C2×C62.C22φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C696C6:2(Dic3:C4)288,615
C63(Dic3⋊C4) = C2×C6.Dic6φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6:3(Dic3:C4)288,780

Non-split extensions G=N.Q with N=C6 and Q=Dic3⋊C4
extensionφ:Q→Aut NdρLabelID
C6.1(Dic3⋊C4) = C12.81D12φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C696C6.1(Dic3:C4)288,219
C6.2(Dic3⋊C4) = C12.15Dic6φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C696C6.2(Dic3:C4)288,220
C6.3(Dic3⋊C4) = C12.Dic6φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C696C6.3(Dic3:C4)288,221
C6.4(Dic3⋊C4) = C12.6Dic6φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C696C6.4(Dic3:C4)288,222
C6.5(Dic3⋊C4) = C6.18D24φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C696C6.5(Dic3:C4)288,223
C6.6(Dic3⋊C4) = C12.8Dic6φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C696C6.6(Dic3:C4)288,224
C6.7(Dic3⋊C4) = C12.82D12φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C6484C6.7(Dic3:C4)288,225
C6.8(Dic3⋊C4) = C62.5Q8φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C6484C6.8(Dic3:C4)288,226
C6.9(Dic3⋊C4) = C62.6Q8φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C696C6.9(Dic3:C4)288,227
C6.10(Dic3⋊C4) = C36.Q8φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6.10(Dic3:C4)288,14
C6.11(Dic3⋊C4) = C4.Dic18φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6.11(Dic3:C4)288,15
C6.12(Dic3⋊C4) = Dic9⋊C8φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6.12(Dic3:C4)288,22
C6.13(Dic3⋊C4) = C36.53D4φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C61444C6.13(Dic3:C4)288,29
C6.14(Dic3⋊C4) = C18.C42φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6.14(Dic3:C4)288,38
C6.15(Dic3⋊C4) = C2×Dic9⋊C4φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6.15(Dic3:C4)288,133
C6.16(Dic3⋊C4) = C12.9Dic6φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6.16(Dic3:C4)288,282
C6.17(Dic3⋊C4) = C12.10Dic6φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6.17(Dic3:C4)288,283
C6.18(Dic3⋊C4) = C12.30Dic6φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6.18(Dic3:C4)288,289
C6.19(Dic3⋊C4) = C62.8Q8φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6144C6.19(Dic3:C4)288,297
C6.20(Dic3⋊C4) = C62.15Q8φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C6288C6.20(Dic3:C4)288,306
C6.21(Dic3⋊C4) = C3×C6.Q16central extension (φ=1)96C6.21(Dic3:C4)288,241
C6.22(Dic3⋊C4) = C3×C12.Q8central extension (φ=1)96C6.22(Dic3:C4)288,242
C6.23(Dic3⋊C4) = C3×Dic3⋊C8central extension (φ=1)96C6.23(Dic3:C4)288,248
C6.24(Dic3⋊C4) = C3×C12.53D4central extension (φ=1)484C6.24(Dic3:C4)288,256
C6.25(Dic3⋊C4) = C3×C6.C42central extension (φ=1)96C6.25(Dic3:C4)288,265

׿
×
𝔽