Copied to
clipboard

G = C12.8Dic6order 288 = 25·32

8th non-split extension by C12 of Dic6 acting via Dic6/C6=C22

metabelian, supersoluble, monomial

Aliases: C12.8Dic6, C62.29D4, (C3×C6).17D8, (C3×C6).7Q16, (C3×C12).8Q8, C12.22(C4×S3), C324C82C4, (C2×C12).83D6, C6.12(D4⋊S3), C325(C2.D8), C32(C6.Q16), C4⋊Dic3.10S3, C6.5(C3⋊Q16), C6.6(Dic3⋊C4), (C6×C12).36C22, C4.5(C322Q8), C4.7(C6.D6), C2.2(C322D8), C2.2(C322Q16), C2.4(C62.C22), C22.10(D6⋊S3), (C2×C4).103S32, (C3×C6).23(C4⋊C4), (C3×C12).34(C2×C4), (C3×C4⋊Dic3).6C2, (C2×C6).52(C3⋊D4), (C2×C324C8).3C2, SmallGroup(288,224)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C12.8Dic6
C1C3C32C3×C6C62C6×C12C3×C4⋊Dic3 — C12.8Dic6
C32C3×C6C3×C12 — C12.8Dic6
C1C22C2×C4

Generators and relations for C12.8Dic6
 G = < a,b,c | a12=b12=1, c2=b6, bab-1=a-1, cac-1=a7, cbc-1=a3b-1 >

Subgroups: 242 in 83 conjugacy classes, 40 normal (18 characteristic)
C1, C2, C3, C3, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, C32, Dic3, C12, C12, C2×C6, C2×C6, C4⋊C4, C2×C8, C3×C6, C3⋊C8, C2×Dic3, C2×C12, C2×C12, C2.D8, C3×Dic3, C3×C12, C62, C2×C3⋊C8, C4⋊Dic3, C3×C4⋊C4, C324C8, C6×Dic3, C6×C12, C6.Q16, C3×C4⋊Dic3, C2×C324C8, C12.8Dic6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, D6, C4⋊C4, D8, Q16, Dic6, C4×S3, C3⋊D4, C2.D8, S32, Dic3⋊C4, D4⋊S3, C3⋊Q16, C6.D6, D6⋊S3, C322Q8, C6.Q16, C322D8, C322Q16, C62.C22, C12.8Dic6

Smallest permutation representation of C12.8Dic6
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 25 68 95 9 29 64 87 5 33 72 91)(2 36 69 94 10 28 65 86 6 32 61 90)(3 35 70 93 11 27 66 85 7 31 62 89)(4 34 71 92 12 26 67 96 8 30 63 88)(13 45 77 55 17 41 81 51 21 37 73 59)(14 44 78 54 18 40 82 50 22 48 74 58)(15 43 79 53 19 39 83 49 23 47 75 57)(16 42 80 52 20 38 84 60 24 46 76 56)
(1 20 64 76)(2 15 65 83)(3 22 66 78)(4 17 67 73)(5 24 68 80)(6 19 69 75)(7 14 70 82)(8 21 71 77)(9 16 72 84)(10 23 61 79)(11 18 62 74)(12 13 63 81)(25 49 87 43)(26 56 88 38)(27 51 89 45)(28 58 90 40)(29 53 91 47)(30 60 92 42)(31 55 93 37)(32 50 94 44)(33 57 95 39)(34 52 96 46)(35 59 85 41)(36 54 86 48)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,25,68,95,9,29,64,87,5,33,72,91)(2,36,69,94,10,28,65,86,6,32,61,90)(3,35,70,93,11,27,66,85,7,31,62,89)(4,34,71,92,12,26,67,96,8,30,63,88)(13,45,77,55,17,41,81,51,21,37,73,59)(14,44,78,54,18,40,82,50,22,48,74,58)(15,43,79,53,19,39,83,49,23,47,75,57)(16,42,80,52,20,38,84,60,24,46,76,56), (1,20,64,76)(2,15,65,83)(3,22,66,78)(4,17,67,73)(5,24,68,80)(6,19,69,75)(7,14,70,82)(8,21,71,77)(9,16,72,84)(10,23,61,79)(11,18,62,74)(12,13,63,81)(25,49,87,43)(26,56,88,38)(27,51,89,45)(28,58,90,40)(29,53,91,47)(30,60,92,42)(31,55,93,37)(32,50,94,44)(33,57,95,39)(34,52,96,46)(35,59,85,41)(36,54,86,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,25,68,95,9,29,64,87,5,33,72,91)(2,36,69,94,10,28,65,86,6,32,61,90)(3,35,70,93,11,27,66,85,7,31,62,89)(4,34,71,92,12,26,67,96,8,30,63,88)(13,45,77,55,17,41,81,51,21,37,73,59)(14,44,78,54,18,40,82,50,22,48,74,58)(15,43,79,53,19,39,83,49,23,47,75,57)(16,42,80,52,20,38,84,60,24,46,76,56), (1,20,64,76)(2,15,65,83)(3,22,66,78)(4,17,67,73)(5,24,68,80)(6,19,69,75)(7,14,70,82)(8,21,71,77)(9,16,72,84)(10,23,61,79)(11,18,62,74)(12,13,63,81)(25,49,87,43)(26,56,88,38)(27,51,89,45)(28,58,90,40)(29,53,91,47)(30,60,92,42)(31,55,93,37)(32,50,94,44)(33,57,95,39)(34,52,96,46)(35,59,85,41)(36,54,86,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,25,68,95,9,29,64,87,5,33,72,91),(2,36,69,94,10,28,65,86,6,32,61,90),(3,35,70,93,11,27,66,85,7,31,62,89),(4,34,71,92,12,26,67,96,8,30,63,88),(13,45,77,55,17,41,81,51,21,37,73,59),(14,44,78,54,18,40,82,50,22,48,74,58),(15,43,79,53,19,39,83,49,23,47,75,57),(16,42,80,52,20,38,84,60,24,46,76,56)], [(1,20,64,76),(2,15,65,83),(3,22,66,78),(4,17,67,73),(5,24,68,80),(6,19,69,75),(7,14,70,82),(8,21,71,77),(9,16,72,84),(10,23,61,79),(11,18,62,74),(12,13,63,81),(25,49,87,43),(26,56,88,38),(27,51,89,45),(28,58,90,40),(29,53,91,47),(30,60,92,42),(31,55,93,37),(32,50,94,44),(33,57,95,39),(34,52,96,46),(35,59,85,41),(36,54,86,48)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F6A···6F6G6H6I8A8B8C8D12A···12H12I···12P
order12223334444446···6666888812···1212···12
size111122422121212122···2444181818184···412···12

42 irreducible representations

dim111122222222244444444
type++++-+++--++-+--
imageC1C2C2C4S3Q8D4D6D8Q16Dic6C4×S3C3⋊D4S32D4⋊S3C3⋊Q16C6.D6C322Q8D6⋊S3C322D8C322Q16
kernelC12.8Dic6C3×C4⋊Dic3C2×C324C8C324C8C4⋊Dic3C3×C12C62C2×C12C3×C6C3×C6C12C12C2×C6C2×C4C6C6C4C4C22C2C2
# reps121421122244412211122

Matrix representation of C12.8Dic6 in GL6(𝔽73)

1710000
1720000
000100
0072100
0000720
0000072
,
21250000
70520000
0002700
0027000
00001330
00004343
,
35610000
29380000
0046000
0004600
00002368
00001850

G:=sub<GL(6,GF(73))| [1,1,0,0,0,0,71,72,0,0,0,0,0,0,0,72,0,0,0,0,1,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[21,70,0,0,0,0,25,52,0,0,0,0,0,0,0,27,0,0,0,0,27,0,0,0,0,0,0,0,13,43,0,0,0,0,30,43],[35,29,0,0,0,0,61,38,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,23,18,0,0,0,0,68,50] >;

C12.8Dic6 in GAP, Magma, Sage, TeX

C_{12}._8{\rm Dic}_6
% in TeX

G:=Group("C12.8Dic6");
// GroupNames label

G:=SmallGroup(288,224);
// by ID

G=gap.SmallGroup(288,224);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,141,36,675,346,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=b^12=1,c^2=b^6,b*a*b^-1=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^3*b^-1>;
// generators/relations

׿
×
𝔽