Extensions 1→N→G→Q→1 with N=C3×C6 and Q=Q16

Direct product G=N×Q with N=C3×C6 and Q=Q16
dρLabelID
Q16×C3×C6288Q16xC3xC6288,831

Semidirect products G=N:Q with N=C3×C6 and Q=Q16
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊Q16 = C2×C32⋊Q16φ: Q16/C2D4 ⊆ Aut C3×C696(C3xC6):Q16288,888
(C3×C6)⋊2Q16 = C2×C322Q16φ: Q16/C4C22 ⊆ Aut C3×C696(C3xC6):2Q16288,482
(C3×C6)⋊3Q16 = C2×C323Q16φ: Q16/C4C22 ⊆ Aut C3×C696(C3xC6):3Q16288,483
(C3×C6)⋊4Q16 = C6×Dic12φ: Q16/C8C2 ⊆ Aut C3×C696(C3xC6):4Q16288,676
(C3×C6)⋊5Q16 = C2×C325Q16φ: Q16/C8C2 ⊆ Aut C3×C6288(C3xC6):5Q16288,762
(C3×C6)⋊6Q16 = C6×C3⋊Q16φ: Q16/Q8C2 ⊆ Aut C3×C696(C3xC6):6Q16288,714
(C3×C6)⋊7Q16 = C2×C327Q16φ: Q16/Q8C2 ⊆ Aut C3×C6288(C3xC6):7Q16288,800

Non-split extensions G=N.Q with N=C3×C6 and Q=Q16
extensionφ:Q→Aut NdρLabelID
(C3×C6).1Q16 = C62.4D4φ: Q16/C2D4 ⊆ Aut C3×C696(C3xC6).1Q16288,388
(C3×C6).2Q16 = C62.7D4φ: Q16/C2D4 ⊆ Aut C3×C696(C3xC6).2Q16288,391
(C3×C6).3Q16 = Dic6⋊Dic3φ: Q16/C4C22 ⊆ Aut C3×C696(C3xC6).3Q16288,213
(C3×C6).4Q16 = C6.Dic12φ: Q16/C4C22 ⊆ Aut C3×C696(C3xC6).4Q16288,214
(C3×C6).5Q16 = C12.73D12φ: Q16/C4C22 ⊆ Aut C3×C696(C3xC6).5Q16288,215
(C3×C6).6Q16 = C6.18D24φ: Q16/C4C22 ⊆ Aut C3×C696(C3xC6).6Q16288,223
(C3×C6).7Q16 = C12.8Dic6φ: Q16/C4C22 ⊆ Aut C3×C696(C3xC6).7Q16288,224
(C3×C6).8Q16 = C3×C2.Dic12φ: Q16/C8C2 ⊆ Aut C3×C696(C3xC6).8Q16288,250
(C3×C6).9Q16 = C3×C241C4φ: Q16/C8C2 ⊆ Aut C3×C696(C3xC6).9Q16288,252
(C3×C6).10Q16 = C6.4Dic12φ: Q16/C8C2 ⊆ Aut C3×C6288(C3xC6).10Q16288,291
(C3×C6).11Q16 = C241Dic3φ: Q16/C8C2 ⊆ Aut C3×C6288(C3xC6).11Q16288,293
(C3×C6).12Q16 = C3×C6.Q16φ: Q16/Q8C2 ⊆ Aut C3×C696(C3xC6).12Q16288,241
(C3×C6).13Q16 = C3×C6.SD16φ: Q16/Q8C2 ⊆ Aut C3×C696(C3xC6).13Q16288,244
(C3×C6).14Q16 = C3×Q82Dic3φ: Q16/Q8C2 ⊆ Aut C3×C696(C3xC6).14Q16288,269
(C3×C6).15Q16 = C12.9Dic6φ: Q16/Q8C2 ⊆ Aut C3×C6288(C3xC6).15Q16288,282
(C3×C6).16Q16 = C62.114D4φ: Q16/Q8C2 ⊆ Aut C3×C6288(C3xC6).16Q16288,285
(C3×C6).17Q16 = C62.117D4φ: Q16/Q8C2 ⊆ Aut C3×C6288(C3xC6).17Q16288,310
(C3×C6).18Q16 = C32×Q8⋊C4central extension (φ=1)288(C3xC6).18Q16288,321
(C3×C6).19Q16 = C32×C2.D8central extension (φ=1)288(C3xC6).19Q16288,325

׿
×
𝔽